cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269930 Primes whose digits are all prime, sum of digits is prime and sum of reciprocals of digits is also prime.

This page as a plain text file.
%I A269930 #21 Jun 26 2019 00:39:33
%S A269930 32233,32323,33223,2222333,2223233,2232323,2233223,3223223,272777777,
%T A269930 277727777,722777777,772277777,772777727,777727277,777777227,
%U A269930 33333555553,33355535533,33355553353,33533555353,33553353553,33553553353,33553553533,33555353353,33555533533,35335355353,35335533553,35353335553
%N A269930 Primes whose digits are all prime, sum of digits is prime and sum of reciprocals of digits is also prime.
%C A269930 Intersection of A019546, A046704, A266815.
%C A269930 Furthermore, 32233, 32323 and 2223233 are primes with prime subscripts (A006450). In fact, 32233 is the 3457th prime, 32323 is the 3467th prime, and 2223233 is the 164239th prime.
%e A269930 32233 is prime, its digits are primes (2 and 3), their sum is prime (3 + 2 + 2 + 3 + 3 = 13) and the sum of reciprocal of digits is also prime (1/3 + 1/2 + 1/2 + 1/3 + 1/3 = 2).
%p A269930 P:=proc(q) local a,b, k,ok, ok2, n;
%p A269930 for n from 1 to q do if isprime(n) then ok:=1; a:=0; for k from 0 to ilog10(n) do
%p A269930 if trunc(n/10^k) mod 10>0 then a:=a+1/(trunc(n/10^k) mod 10) else ok:=0; break; fi; od;
%p A269930 if ok=1 and type(a,integer) then if isprime(a) then a:=0; b:=n; ok2:=1;
%p A269930 for k from 1 to ilog10(n)+1 do if isprime(b mod 10) then a:=a+(b mod 10); b:=trunc(b/10);
%p A269930 else ok2:=0; break; fi; od; if ok2=1 and isprime(a) then print(n); fi; fi; fi; fi; od; end: P(10^9);
%t A269930 Select[Select[Flatten@ Map[Map[FromDigits, Tuples[{2, 3, 5, 7}, #]] &, Range@ 11], PrimeQ], And[PrimeQ[Total@ #], PrimeQ[Total[1/#]]] &@ IntegerDigits@ # &] (* _Michael De Vlieger_, Mar 08 2016 *)
%Y A269930 Cf. A000040, A006450, A019546, A046704, A266815.
%K A269930 nonn,easy,base
%O A269930 1,1
%A A269930 _Paolo P. Lava_, Mar 08 2016
%E A269930 More terms from _Michael De Vlieger_, Mar 08 2016