cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269931 Integers n such that the sum of squares of the first n primes (A024450) is the sum of 4 but no fewer nonzero squares.

Original entry on oeis.org

4, 12, 20, 28, 29, 36, 44, 49, 52, 57, 60, 68, 73, 76, 84, 92, 100, 105, 108, 116, 124, 132, 140, 148, 153, 156, 161, 164, 172, 180, 188, 189, 196, 201, 204, 212, 220, 228, 236, 244, 252, 260, 268, 276, 281, 284, 289, 292, 300, 308, 316, 324, 329, 332, 340, 345, 348, 356, 364, 372
Offset: 1

Views

Author

Altug Alkan, Mar 08 2016

Keywords

Comments

Terms that are not divisible by 4 are 29, 49, 57, 73, 105, 153, 161, 189, 201, 281, 289, 329, 345, 373, 385, 409, 417, 449, 457, 529, 553, 617, 633, 641, 645, ...
Corresponding values of sum of squares of the first n primes are 87, 4727, 30007, 98055, 109936, 239087, 486655, 710844, 874695, 1203356, 1432487, 2210983, 2841372, 3270831, ...

Examples

			4 is a term because 2^2 + 3^2 + 5^2 + 7^2 = 87 and 87 = x^2 + y^2 + z^2 has no solution for integer x, y and z.
5 is not a term because 2^2 + 3^2 + 5^2 + 7^2 + 11^2 = 208 = 8^2 + 12^2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 372, Nand[SquaresR[4, #] > 1, Or[SquaresR[3, #] > 1, SquaresR[2, #] > 1, IntegerQ@ Sqrt@ #]] &@ Total[Prime[Range@ #]^2] &] (* Michael De Vlieger, Mar 08 2016 *)
  • PARI
    isA004215(n)= my(fouri, j) ; fouri=1 ; while( n >=7*fouri, if( n % fouri ==0, j= n/fouri-7 ; if( j % 8==0, return(1) ) ; ); fouri *= 4 ; ) ; return(0) ;
    a024450(n) = sum(k=1, n, prime(k)^2);
    for(n=1, 1e3, if(isA004215(a024450(n)), print1(n, ", ")));
    
  • PARI
    list(lim)=my(v=List(),n,s); forprime(p=2,, s+=p^2; if(n++>lim, return(Vec(v))); if(s\4^valuation(s, 4)%8==7, listput(v,n))) \\ Charles R Greathouse IV, Mar 08 2016