A269946 Triangle read by rows, Lah numbers of order 3, T(n,n) = 1, T(n,k) = 0 if k<0 or k>n, otherwise T(n,k) = T(n-1,k-1)+((n-1)^3+k^3)*T(n-1, k), for n>=0 and 0<=k<=n.
1, 0, 1, 0, 2, 1, 0, 18, 18, 1, 0, 504, 648, 72, 1, 0, 32760, 47160, 7200, 200, 1, 0, 4127760, 6305040, 1141560, 45000, 450, 1, 0, 895723920, 1416456720, 283704120, 13741560, 198450, 882, 1, 0, 308129028480, 498072032640, 106386981120, 5876519040, 106616160, 691488, 1568, 1
Offset: 0
Examples
Triangle starts: [1] [0, 1] [0, 2, 1] [0, 18, 18, 1] [0, 504, 648, 72, 1] [0, 32760, 47160, 7200, 200, 1] [0, 4127760, 6305040, 1141560, 45000, 450, 1]
Links
- Peter Luschny, The P-transform.
Crossrefs
Programs
-
Maple
T := proc(n, k) option remember; `if`(n=k, 1, `if`(k<0 or k>n, 0, T(n-1, k-1) + ((n-1)^3+k^3) * T(n-1, k) )) end: for n from 0 to 6 do seq(T(n,k), k=0..n) od;
-
Mathematica
T[n_, n_] = 1; T[, 0] = 0; T[n, k_] /; 0 < k < n := T[n, k] = T[n-1, k-1] + ((n-1)^3 + k^3)*T[n-1, k]; T[, ] = 0; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2017 *)