A269947 Triangle read by rows, Stirling cycle numbers of order 3, T(n,n) = 1, T(n,k) = 0 if k<0 or k>n, otherwise T(n,k) = T(n-1,k-1)+(n-1)^3*T(n-1,k), for n>=0 and 0<=k<=n.
1, 0, 1, 0, 1, 1, 0, 8, 9, 1, 0, 216, 251, 36, 1, 0, 13824, 16280, 2555, 100, 1, 0, 1728000, 2048824, 335655, 15055, 225, 1, 0, 373248000, 444273984, 74550304, 3587535, 63655, 441, 1, 0, 128024064000, 152759224512, 26015028256, 1305074809, 25421200, 214918, 784, 1
Offset: 0
Examples
Triangle starts: 1, 0, 1, 0, 1, 1, 0, 8, 9, 1, 0, 216, 251, 36, 1, 0, 13824, 16280, 2555, 100, 1, 0, 1728000, 2048824, 335655, 15055, 225, 1.
Links
- Peter Luschny, The P-transform.
Crossrefs
Programs
-
Maple
T := proc(n, k) option remember; `if`(n=k, 1, `if`(k<0 or k>n, 0, T(n-1, k-1) + (n-1)^3*T(n-1, k))) end: for n from 0 to 6 do seq(T(n,k), k=0..n) od;
-
Mathematica
T[n_, k_] := T[n, k] = Which[n == k, 1, k < 0 || k > n, 0, True, T[n - 1, k - 1] + (n - 1)^3 T[n - 1, k]]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 12 2019 *)