cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269948 Triangle read by rows, Stirling set numbers of order 3, T(n,n) = 1, T(n,k) = 0 if k<0 or k>n, otherwise T(n,k) = T(n-1,k-1)+k^3*T(n-1, k), for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 9, 1, 0, 1, 73, 36, 1, 0, 1, 585, 1045, 100, 1, 0, 1, 4681, 28800, 7445, 225, 1, 0, 1, 37449, 782281, 505280, 35570, 441, 1, 0, 1, 299593, 21159036, 33120201, 4951530, 130826, 784, 1
Offset: 0

Views

Author

Peter Luschny, Mar 22 2016

Keywords

Comments

Also called 3rd central factorial numbers.

Examples

			1,
0, 1,
0, 1, 1,
0, 1, 9,     1,
0, 1, 73,    36,     1,
0, 1, 585,   1045,   100,    1,
0, 1, 4681,  28800,  7445,   225,   1,
0, 1, 37449, 782281, 505280, 35570, 441, 1.
		

Crossrefs

Variant: A098436.
Cf. A007318 (order 0), A048993 (order 1), A269945 (order 2).

Programs

  • Maple
    T := proc(n, k) option remember;
        `if`(n=k, 1,
        `if`(k<0 or k>n, 0,
         T(n-1, k-1) + k^3*T(n-1, k))) end:
    for n from 0 to 9 do seq(T(n,k), k=0..n) od;
  • Mathematica
    T[n_, n_] = 1; T[n_, k_] /; 0 <= k <= n := T[n, k] = T[n - 1, k - 1] + k^3*T[n - 1, k]; T[, ] = 0;
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 25 2019 *)

Formula

T(n,2) = (8^(n-1)-1)/7 for n>=1 (cf. A023001).
T(n,n-1) = (n*(n-1)/2)^2 for n>=1 (cf. A000537).
Row sums: A098437.