This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A269952 #9 Apr 18 2016 06:37:45 %S A269952 1,0,1,0,2,1,0,4,5,1,0,8,19,9,1,0,16,65,55,14,1,0,32,211,285,125,20,1, %T A269952 0,64,665,1351,910,245,27,1,0,128,2059,6069,5901,2380,434,35,1,0,256, %U A269952 6305,26335,35574,20181,5418,714,44,1 %N A269952 Triangle read by rows, T(n,k) = Sum_{j=0..n} (-1)^(n-j)*C(-j,-n)*S2(j,k), S2 the Stirling set numbers A048993, for n>=0 and 0<=k<=n. %H A269952 Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/ExtensionsOfTheBinomial">Extensions of the binomial</a> %F A269952 T(n, k) = S2(n+1, k+1) - S2(n, k+1). %e A269952 1, %e A269952 0, 1, %e A269952 0, 2, 1, %e A269952 0, 4, 5, 1, %e A269952 0, 8, 19, 9, 1, %e A269952 0, 16, 65, 55, 14, 1, %e A269952 0, 32, 211, 285, 125, 20, 1, %e A269952 0, 64, 665, 1351, 910, 245, 27, 1. %p A269952 A269952 := (n,k) -> Stirling2(n+1, k+1) - Stirling2(n, k+1): %p A269952 seq(seq(A269952(n,k), k=0..n), n=0..9); %t A269952 Flatten[ Table[ Sum[(-1)^(n-j) Binomial[-j,-n] StirlingS2[j,k], {j,0,n}], {n,0,9}, {k,0,n}]] %Y A269952 Variant: A143494 (the main entry for this triangle). %Y A269952 A005493 (row sums), A074051 (alt. row sums), A000079 (col. 1), A001047 (col. 2), %Y A269952 A016269 (col. 3), A025211 (col. 4), A000096 (diag. n,n-1), A215862 (diag. n,n-2), %Y A269952 A049444, A136124, A143491 (matrix inverse). %Y A269952 Cf. A048993, A269951. %K A269952 nonn,tabl %O A269952 0,5 %A A269952 _Peter Luschny_, Apr 10 2016