cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A269951 Triangle read by rows, T(n,k) = Sum_{j=0..n} (-1)^(n-j)*C(-j,-n)*S1(j,k), S1 the Stirling cycle numbers A132393, for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 5, 5, 1, 0, 16, 23, 9, 1, 0, 65, 116, 65, 14, 1, 0, 326, 669, 470, 145, 20, 1, 0, 1957, 4429, 3634, 1415, 280, 27, 1, 0, 13700, 33375, 30681, 14084, 3535, 490, 35, 1, 0, 109601, 283072, 284066, 147532, 43939, 7756, 798, 44, 1
Offset: 0

Views

Author

Peter Luschny, Apr 10 2016

Keywords

Examples

			Triangle begins:
  1;
  0,   1;
  0,   2,   1;
  0,   5,   5,   1;
  0,  16,  23,   9,   1;
  0,  65, 116,  65,  14,  1;
  0, 326, 669, 470, 145, 20, 1;
		

Crossrefs

A000522 (col. 1), A073596 (col. 2), A000096 (diag. n-1), A241765 (diag. n-2).
A001339 (row sums), A137597 (unsigned matrix inverse).

Programs

  • Maple
    A269951 := (n,k) -> add((-1)^(n-j)*binomial(-j,-n)*abs(Stirling1(j,k)), j=0..n):
    seq(seq(A269951(n,k), k=0..n), n=0..9);
  • Mathematica
    Flatten[ Table[ Sum[(-1)^(n-j) Binomial[-j,-n] Abs[StirlingS1[j,k]], {j,0,n}], {n,0,9}, {k,0,n}]]
Showing 1-1 of 1 results.