This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A269954 #23 Feb 13 2025 07:54:17 %S A269954 1,0,1,0,0,1,0,1,1,1,0,2,5,3,1,0,9,20,17,6,1,0,44,109,100,45,10,1,0, %T A269954 265,689,694,355,100,15,1,0,1854,5053,5453,3094,1015,196,21,1,0,14833, %U A269954 42048,48082,29596,10899,2492,350,28,1 %N A269954 Triangle read by rows, T(n,k) = Sum_{j=0..n} C(-j,-n)*S1(j,k), S1 the Stirling cycle numbers A132393, for n>=0 and 0<=k<=n. %H A269954 Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/ExtensionsOfTheBinomial">Extensions of the binomial</a> %e A269954 Triangle starts: %e A269954 1; %e A269954 0, 1; %e A269954 0, 0, 1; %e A269954 0, 1, 1, 1; %e A269954 0, 2, 5, 3, 1; %e A269954 0, 9, 20, 17, 6, 1; %e A269954 0, 44, 109, 100, 45, 10, 1; %e A269954 0, 265, 689, 694, 355, 100, 15, 1; %p A269954 A269954 := (n, k) -> add(binomial(-j, -n)*abs(Stirling1(j, k)), j=0..n): %p A269954 seq(seq(A269954(n, k), k=0..n), n=0..9); %t A269954 Flatten[Table[Sum[Binomial[-j,-n] Abs[StirlingS1[j,k]],{j,0,n}], {n,0,9},{k,0,n}]] %o A269954 (PARI) T(n, k) = sum(j=0, n, (-1)^(n-j)*binomial(n-1, n-j)*abs(stirling(j, k))); %o A269954 for(n=0, 9, for(k=0, n, print1(T(n, k), ", "))); \\ _Seiichi Manyama_, Feb 13 2025 %Y A269954 A000255 (row sums), A000217 (diag. n,n-1), A133252 (diag. n,n-2). %Y A269954 Columns k=0..4 give A000007, A000166(n-1), A300490(n-1), A381067(n-1), A381068(n-1). %Y A269954 Cf. A269951, A269953. %K A269954 nonn,tabl %O A269954 0,12 %A A269954 _Peter Luschny_, Apr 12 2016