This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A269957 #10 Mar 14 2020 16:36:23 %S A269957 1,0,1,0,5,9,0,41,210,225,0,469,5115,14175,11025,0,6889,142492,763350, %T A269957 1455300,893025,0,123605,4566149,41943090,146522250,212837625, %U A269957 108056025,0,2620169,166939742,2462128095,13973628900,35936814375,42141849750,18261468225 %N A269957 Triangle read by rows, T(n,k) = Sum_{j=k..n} A269940(n,j)*A269939(j,k), for n>=0 and 0<=k<=n. %F A269957 T(n,n) = A001818(n). %F A269957 T(n,1) = A032188(n+1) for n>=1. %e A269957 Triangle starts: %e A269957 [1] %e A269957 [0, 1] %e A269957 [0, 5, 9] %e A269957 [0, 41, 210, 225] %e A269957 [0, 469, 5115, 14175, 11025] %e A269957 [0, 6889, 142492, 763350, 1455300, 893025] %o A269957 (Sage) %o A269957 F = lambda n,k,f: sum((-1)^(m+k)*binomial(n+k,n+m)*f(n+m,m) for m in (0..k)) %o A269957 T = lambda n,k: sum(F(n, j, stirling_number1)*F(j, k, stirling_number2) for j in (k..n)) %o A269957 for n in (0..6): print([T(n, k) for k in (0..n)]) %Y A269957 Cf. A001818, A032188, A269939, A269940. %K A269957 nonn,tabl %O A269957 0,5 %A A269957 _Peter Luschny_, Mar 27 2016