This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A269984 #24 Oct 06 2023 03:28:27 %S A269984 4,5,8,9,12,14,16,18,22,23,24,26,27,32,33,37,38,39,48,49,53,54,57,58, %T A269984 61,64,66,78,81,83,86,87,96,97,101,107,113,114,121,129,131,139,163, %U A269984 169,174,178,181,193,218,227,241,257,263,267,277,302,317,327,331 %N A269984 Numbers k having factorial fractility A269982(k) = 2. %C A269984 See A269982 for a definition of factorial fractility and a guide to related sequences. %H A269984 Robert Price, <a href="/A269984/b269984.txt">Table of n, a(n) for n = 1..67</a> %e A269984 NI(1/5) = (2, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 2, ...) %e A269984 NI(2/5) = (2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, ...) %e A269984 NI(3/5) = (1, 2, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, ...) %e A269984 NI(4/5) = (1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, ...) %e A269984 so there are 2 equivalences classes for n = 5, and the fractility of 5 is 2. %t A269984 A269982[n_] := CountDistinct[With[{l = NestWhileList[ %t A269984 Rescale[#, {1/(Floor[x] + 1)!, 1/Floor[x]!} /. %t A269984 FindRoot[1/x! == #, {x, 1}]] &, #, UnsameQ, All]}, %t A269984 Min@l[[First@First@Position[l, Last@l] ;;]]] & /@ %t A269984 Range[1/n, 1 - 1/n, 1/n]]; (* _Davin Park_, Nov 19 2016 *) %t A269984 Select[Range[2, 500], A269982[#] == 2 &] (* _Robert Price_, Sep 19 2019 *) %o A269984 (PARI) select( is_A269984(n)=A269982(n)==2, [1..300]) \\ _M. F. Hasler_, Nov 05 2018 %Y A269984 Cf. A000142 (factorial numbers), A269982 (factorial fractility of n); A269983, A269985, A269986, A269987, A269988 (numbers with factorial fractility 1, 3, ..., 6, respectively). %Y A269984 Cf. A269570 (binary fractility), A270000 (harmonic fractility). %K A269984 nonn %O A269984 1,1 %A A269984 _Clark Kimberling_ and _Peter J. C. Moses_, Mar 11 2016 %E A269984 Edited by _M. F. Hasler_, Nov 05 2018