This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A269985 #20 Oct 06 2023 03:28:36 %S A269985 10,15,17,21,25,30,36,41,42,44,52,55,62,72,74,76,88,93,98,99,103,104, %T A269985 106,108,111,118,122,125,128,132,134,137,146,149,155,158,162,166,173, %U A269985 176,177,179,183,186,192,198,201,202,203,214,219,226,228,237,242,249 %N A269985 Numbers k having factorial fractility A269982(k) = 3. %C A269985 See A269982 for a definition of factorial fractility and a guide to related sequences. %H A269985 Robert Price, <a href="/A269985/b269985.txt">Table of n, a(n) for n = 1..91</a> %e A269985 NI(1/10) = (3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, ...), %e A269985 NI(2/10) = (2, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, ...) ~ NI(1/10), %e A269985 NI(3/10) = (2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, ...), %e A269985 NI(4/10) = (2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, ...) ~ NI(3/10), %e A269985 NI(5/10) = (2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...), %e A269985 NI(6/10) = (1, 2, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 2, 1, ...) ~ NI(1/10), %e A269985 NI(7/10) = (1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, ...) ~ NI(3/10), %e A269985 NI(8/10) = (1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 2, ...) ~ NI(1/10), %e A269985 NI(9/10) = (1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, ...) ~ NI(1/10), %e A269985 so that there are 3 equivalence classes for n = 10, so the factorial fractility of 10 is 3. %t A269985 A269982[n_] := CountDistinct[With[{l = NestWhileList[ %t A269985 Rescale[#, {1/(Floor[x] + 1)!, 1/Floor[x]!} /. %t A269985 FindRoot[1/x! == #, {x, 1}]] &, #, UnsameQ, All]}, %t A269985 Min@l[[First@First@Position[l, Last@l] ;;]]] & /@ %t A269985 Range[1/n, 1 - 1/n, 1/n]]; (* _Davin Park_, Nov 19 2016 *) %t A269985 Select[Range[2, 500], A269982[#] == 3 &] (* _Robert Price_, Sep 19 2019 *) %o A269985 (PARI) select( is_A269985(n)=A269982(n)==2, [1..200]) \\ _M. F. Hasler_, Nov 05 2018 %Y A269985 Cf. A000142 (factorial numbers), A269982 (factorial fractility of n); A269983, A269984, A269986, A269987, A269988 (numbers with factorial fractility 1, 2, ..., 6, respectively). %Y A269985 Cf. A269570 (binary fractility), A270000 (harmonic fractility). %K A269985 nonn %O A269985 1,1 %A A269985 _Clark Kimberling_ and _Peter J. C. Moses_, Mar 11 2016 %E A269985 Edited by _M. F. Hasler_, Nov 05 2018