cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269986 Numbers k having factorial fractility A269982(k) = 4.

Original entry on oeis.org

20, 28, 34, 35, 40, 45, 46, 47, 50, 51, 56, 60, 63, 65, 69, 75, 77, 80, 82, 84, 90, 91, 102, 110, 112, 116, 117, 120, 123, 124, 133, 135, 144, 147, 148, 150, 152, 156, 159, 160, 165, 167, 171, 172, 194, 206, 208, 209, 216, 217, 222, 223, 234, 236, 239, 240
Offset: 1

Views

Author

Keywords

Comments

See A269982 for a definition of factorial fractility and a guide to related sequences.

Examples

			NI(1/20) = (3, 3, 2, 3, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 3, 2, ...)
NI(5/20) = (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ...)
NI(6/20) = (2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, ...)
NI(10/20) = (2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...).
These 4 equivalence classes represent all the classes for n = 20, so the factorial fractility of 20 is 4.
		

Crossrefs

Cf. A000142 (factorial numbers), A269982 (factorial fractility of n); A269983, A269984, A269985, A269987, A269988 (numbers with factorial fractility 1, 2, ..., 6, respectively).
Cf. A269570 (binary fractility), A270000 (harmonic fractility).

Programs

  • Mathematica
    A269982[n_] := CountDistinct[With[{l = NestWhileList[
            Rescale[#, {1/(Floor[x] + 1)!, 1/Floor[x]!} /.
               FindRoot[1/x! == #, {x, 1}]] &, #, UnsameQ, All]},
         Min@l[[First@First@Position[l, Last@l] ;;]]] & /@
       Range[1/n, 1 - 1/n, 1/n]]; (* Davin Park, Nov 19 2016 *)
    Select[Range[2, 500], A269982[#] == 4 &] (* Robert Price, Sep 19 2019 *)
  • PARI
    select( is_A269986(n)=A269982(n)==4, [1..200]) \\ M. F. Hasler, Nov 05 2018

Extensions

Edited by M. F. Hasler, Nov 05 2018