This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A269990 #14 Jun 25 2017 00:01:47 %S A269990 1,2,2,3,4,4,4,5,6,6,6,7,8,8,9,9,6,10,10,10,12,12,11,12,15,7,14,15,12, %T A269990 17,16,13,17,15,13,18,18,16,18,23,16,20,21,14,22,23,19,23,22,20,27,26, %U A269990 16,24,26,21,28,27,20,29,32,18,30,33,27,35,33,27,29 %N A269990 Primes fractility of n. %C A269990 In order to define (primes) fractility of an integer n > 1, we first define nested interval sequences. Suppose that r = (r(n)) is a sequence satisfying (i) 1 = r(1) > r(2) > r(3) > ... and (ii) r(n) -> 0. For x in (0,1], let n(1) be the index n such that r(n+1), x <= r(n), and let L(1) = r(n(1)) - r(n(1)+1). Let n(2) be the index n such that r(n(1)+1) < x <= r(n(1)+1) + L(1)r(n), and let L(2) = (r(n(2)) - r(r(n)+1))L(1). Continue inductively to obtain the sequence (n(1), n(2), n(3), ...), the r-nested interval sequence of x. %C A269990 For fixed r, call x and y equivalent if NI(x) and NI(y) are eventually identical. For n > 1, the r-fractility of n is the number of equivalence classes of sequences NI(m/n) for 0 < m < n. Taking r = (1/2, 1/3, 1/5, 1/7, 1/11, ... ) gives primes fractility. %C A269990 binary fractility: A269570 %C A269990 factorial fractility: A269982 %C A269990 harmonic fractility: A270000 %C A269990 odds fractility: A269989 %e A269990 NI(1/11) = (5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...) %e A269990 NI(2/11) = (3,1,1,2,1,1,3,1,3,1,1,1,2,2,1,1,1,2,1,1,1,4,4,1,2,10,1,1,1,1,1,1,1,1,1,2,1,1,8,1,1,1,1,1,2,1,2,1,1,1,1,1,2,1,4,1,1,3,1,8,1,1,1,1,1,1,...) %e A269990 NI(3/11) = (2,1,2,1,1,1,1,1,4,1,1,1,1,1,3,2,9,1,1,1,2,1,2,2,2,2,1,1,1,4,1,1,1,1,1,1,1,1,1,1,11,1,2,4,1,4,3,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,2,...) %e A269990 NI(4/11) = (1,8,2,4,1,2,1,1,1,1,1,2,1,3,2,1,5,1,1,8,1,4,1,1,1,1,1,1,1,2,3,3,1,3,1,1,1,1,1,5,2,3,2,4,2,1,8,2,1,1,2,2,106,2,3,1,1,1,1,1,1,2,2,6,1,,...) %e A269990 NI(5/11) = (1,3,1,1,2,1,1,3,1,3,1,1,1,2,2,1,1,1,2,1,1,1,4,4,1,2,10,1,1,1,1,1,1,1,1,1,2,1,1,8,1,1,1,1,1,2,1,2,1,1,1,1,1,2,1,4,1,1,3,1,8,1,1,1,1,1,1,...) %e A269990 NI(6/11) = (1,2,1,1,1,1,1,4,1,1,1,1,1,3,2,9,1,1,1,2,1,2,2,2,2,1,1,1,4,1,1,1,1,1,1,1,1,1,1,11,1,2,4,1,4,3,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,2,1,1,1,...); %e A269990 NI(7/11) = (1,1,3,1,1,2,1,1,3,1,3,1,1,1,2,2,1,1,1,2,1,1,1,4,4,1,2,10,1,1,1,1,1,1,1,1,1,2,1,1,8,1,1,1,1,1,2,1,2,1,1,1,1,1,2,1,4,1,1,3,1,8,1,1,1,1,1,1,...); %e A269990 NI(8/11) = (1,1,1,5,3,1,1,1,2,1,3,1,1,1,1,1,2,1,11,1,1,1,1,1,1,1,1,2,1,1,1,2,1,8,1,1,2,3,1,1,1,6,1,2,1,4,1,1,1,1,1,1,34,1,8,1,3,1,1,5,1,1,1,1,1,4,1,...); %e A269990 NI(9/11) = (1,1,1,1,5,3,1,1,1,2,1,3,1,1,1,1,1,2,1,11,1,1,1,1,1,1,1,1,2,1,1,1,2,1,8,1,1,2,3,1,1,1,6,1,2,1,4,1,1,1,1,1,1,34,1,8,1,3,1,1,5,1,1,1,1,1,4,...); %e A269990 NI(10/11) = (1,1,1,1,1,2,1,1,1,1,4,3,1,1,1,1,1,1,2,1,1,1,1,6,1,1,1,1,3,2,1,1,1,1,5,7,1,3,2,1,3,1,1,1,1,1,1,1,1,3,1,1,2,2,4,2,1,1,1,1,1,1,1,1,1,1,1,6,...); there are 6 equivalence classes: {1/11}, {2/11,5/11,7/11},{3,11,6/11},{4/11},{8/11,9/11},{10/11}, so that a(11) = 6. %Y A269990 Cf. A000040, A269570, A269982, A269989, A270000. %K A269990 nonn,easy %O A269990 2,2 %A A269990 _Clark Kimberling_ and _Peter J. C. Moses_, Mar 12 2016