A269994 Denominators of r-Egyptian fraction expansion for sqrt(1/3), where r = (1,1/2,1/3,1/4,...)
2, 7, 57, 3391, 10010183, 588972486242552, 961457184347597076119863109462, 2244227167765735741796211572067153905745156229769919746729015
Offset: 1
Examples
sqrt(1/3) = 1/2 + 1/(2*7) + 1/(3*57) + ...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..12
- Eric Weisstein's World of Mathematics, Egyptian Fraction
- Index entries for sequences related to Egyptian fractions
Crossrefs
Cf. A269993.
Programs
-
Mathematica
r[k_] := 1/k; f[x_, 0] = x; z = 10; n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] x = Sqrt[1/3]; Table[n[x, k], {k, 1, z}]
-
PARI
r(k) = 1/k; x = sqrt(1/3); f(x, k) = if(k<1, x, f(x, k - 1) - r(k)/n(x, k)); n(x, k) = ceil(r(k)/f(x, k - 1)); for(k = 1, 8, print1(n(x, k),", ")) \\ Indranil Ghosh, Mar 27 2017, translated from Mathematica code
Comments