A269995 Denominators of r-Egyptian fraction expansion for sqrt(2) - 1, where r = (1,1/2,1/3,1/4,...)
3, 7, 36, 1300, 2206054, 14887222782418, 292542996759533035472424790, 7282957087563143077864043818232331102110274520711753058, 259880230781524461939787525796521055875618560291171401151227648777033604862236784108033156713828890456025177451
Offset: 1
Examples
sqrt(2) - 1 = 1/(2*3) + 1/(3*7) + 1/(4*36) + ...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..12
- Eric Weisstein's World of Mathematics, Egyptian Fraction
- Index entries for sequences related to Egyptian fractions
Crossrefs
Cf. A269993.
Programs
-
Mathematica
r[k_] := 1/k; f[x_, 0] = x; z = 10; n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] x = Sqrt[2] - 1; Table[n[x, k], {k, 1, z}]
Comments