cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269996 Denominators of r-Egyptian fraction expansion for sqrt(3) - 1, where r = (1,1/2,1/3,1/4,...)

Original entry on oeis.org

2, 3, 6, 26, 939, 800567, 626897816036, 732632470241183632257841, 31706715561023122142248280773186018287458544854469, 1666726692230759969765850044548001173784581299264219742879080654883940143766478552206863259848365362
Offset: 1

Views

Author

Clark Kimberling, Mar 15 2016

Keywords

Comments

Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ... , the r-Egyptian fraction for x.
See A269993 for a guide to related sequences.

Examples

			sqrt(3) - 1 = 1/2 + 1/(2*3) + 1/(3*6) + ...
		

Crossrefs

Cf. A269993.

Programs

  • Mathematica
    r[k_] := 1/k; f[x_, 0] = x; z = 10;
    n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
    f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
    x = Sqrt[3] - 1; Table[n[x, k], {k, 1, z}]