A269998 Denominators of r-Egyptian fraction expansion for 1/Pi, where r = (1,1/2,1/3,1/4,...)
4, 8, 58, 3984, 22875462, 931267108879599, 1031674577884217945682977326053, 1260295551033259417770370489346530643885445465368122822066849
Offset: 1
Examples
1/Pi = 1/4 + 1/(2*8) + 1/(3*58) + ...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..12
- Eric Weisstein's World of Mathematics, Egyptian Fraction
- Index entries for sequences related to Egyptian fractions
Crossrefs
Cf. A269993.
Programs
-
Mathematica
r[k_] := 1/k; f[x_, 0] = x; z = 10; n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] x = 1/Pi; Table[n[x, k], {k, 1, z}]
-
PARI
r(k) = 1/k; x = 1/Pi; f(x, k) = if(k<1, x, f(x, k - 1) - r(k)/n(x, k)); n(x, k) = ceil(r(k)/f(x, k - 1)); for(k = 1, 8, print1(n(x, k), ", ")) \\ Indranil Ghosh, Mar 29 2017
Comments