A269999 Denominators of r-Egyptian fraction expansion for Pi - 3, where r = (1,1/2,1/3,1/4,...)
8, 31, 719, 17276711, 557951558165893, 1713250424923433306065171045669, 3960162768997467999491098138568123635738830147395528618636887, 148114266323338300606167235125265318767829304330791212171374192569332869541220746054882408155611146661783688512870116687748
Offset: 1
Examples
Pi - 3 = 1/8 + 1/(2*31) + 1/(3*719) + ...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..11
- Eric Weisstein's World of Mathematics, Egyptian Fraction
- Index entries for sequences related to Egyptian fractions
Crossrefs
Cf. A269993.
Programs
-
Mathematica
r[k_] := 1/k; f[x_, 0] = x; z = 10; n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] x = Pi - 3; Table[n[x, k], {k, 1, z}]
-
PARI
r(k) = 1/k; x = Pi - 3; f(x, k) = if(k<1, x, f(x, k - 1) - r(k)/n(x, k)); n(x, k) = ceil(r(k)/f(x, k - 1)); for(k = 1, 8, print1(n(x, k), ", ")) \\ Indranil Ghosh, Mar 29 2017
Comments