This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A270000 #43 Nov 06 2018 06:47:16 %S A270000 1,1,1,2,1,1,1,1,2,3,1,3,1,2,1,1,1,3,2,1,3,3,1,3,3,1,1,3,2,1,1,3,1,3, %T A270000 1,2,3,3,2,4,1,2,3,2,3,3,1,1,3,1,3,3,1,5,1,3,3,2,2,2,1,1,1,5,3,3,1,3, %U A270000 3,4,1,2,2,3,3,6,3,3,2,1,4,3,1,2,2,3,3 %N A270000 Harmonic fractility of n. %C A270000 In order to define (harmonic) fractility of an integer m > 1, we first define nested interval sequences. Suppose that r = (r(n)) is a sequence satisfying (i) 1 = r(1) > r(2) > r(3) > ... and (ii) r(n) -> 0. For x in (0,1], let n(1) be the index n such that r(n+1) < x <= r(n), and let L(1) = r(n(1)) - r(n(1)+1). Let n(2) be the index n such that r(n(1)+1) + L(1)*r(n+1) < x <= r(n(1)+1) + L(1)*r(n), and let L(2) = (r(n(2))-r(n(2)+1))*L(1). Continue inductively to obtain the sequence (n(1), n(2), n(3), ...) =: NI(x), the r-nested interval sequence of x. %C A270000 For fixed r, call x and y equivalent if NI(x) and NI(y) are eventually identical. For m > 1, the r-fractility of m is the number of equivalence classes of sequences NI(k/m) for 0 < k < m. Taking r = (1/1, 1/2, 1/3, 1/4, ... ) gives harmonic fractility. %C A270000 For harmonic fractility, r(n) = 1/n, n(j+1) = floor(L(j)/(x - Sum_{i=1..j} L(i-1)/(n(i)+1))) for all j >= 0, L(0) = 1. - _M. F. Hasler_, Nov 05 2018 %H A270000 Jack W Grahl, <a href="/A270000/b270000.txt">Table of n, a(n) for n = 2..999</a> %H A270000 Jack W Grahl, <a href="/A270000/a270000.py.txt">Python code to generate this sequence</a> %e A270000 NI(1/11) = (11, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...), %e A270000 NI(2/11) = (5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, ...), %e A270000 NI(3/11) = (3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...), %e A270000 NI(4/11) = (2, 5, 2, 1, 2, 1, 2, 1, 2, 1, 2, ...), %e A270000 NI(5/11) = (2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, ...), %e A270000 NI(6/11) = (1, 11, 1, 1, 1, 1, 1, 1, 1, 1, ...), %e A270000 NI(7/11) = (1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...), %e A270000 NI(8/11) = (1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, ...), %e A270000 NI(9/11) = (1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...), %e A270000 NI(10/11) = (1, 1, 1, 3, 3, 3, 3, 3, 3, 3, ...), %e A270000 so that there are 3 equivalence classes for n = 11, and that the harmonic fractility of 11 is 3. %t A270000 A270000[n_] := CountDistinct[With[{l = NestWhileList[Rescale[#, {1/(Floor[1/#] + 1), 1/Floor[1/#]}] &, #, UnsameQ, All]}, Min@l[[First@FirstPosition[l, Last@l] ;;]]] & /@ Range[1/n, 1 - 1/n, 1/n]] (* _Davin Park_, Nov 09 2016 *) %o A270000 From _M. F. Hasler_, Nov 05 2018: (Start) %o A270000 (PARI) A270000(n)=#Set(vector(n-1,k,NIR(k/n))) \\ where: %o A270000 NIR(x, n, L=1, S=[], c=0)={for(i=2, oo, n=L\x; S=setunion(S, [x/L]); x-=L/(n+1); L/=n*(n+1); setsearch(S, x/L)&& if(c, break, c=!S=[])); S[1]} \\ variant of the function NI() below; returns just a unique representative (smallest x/L occurring within the period) of the equivalence class. %o A270000 NI(x, n=[], L=1, S=[], c=0)={for(i=2, oo, n=concat(n, L\x); c|| S=setunion(S, [x/L]); x-=L/(n[#n]+1); L/=n[#n]*(n[#n]+1); if(!c, setsearch(S, x/L)&& [c,S]=[i,x/L], x/L==S, c-=i; break)); [n[1..2*c-1], n[c..-1]]} \\ Returns the harmonic nested interval sequence for x in the form [transition, period]. (End) %Y A270000 Guide to related sequences: %Y A270000 k - numbers with harmonic fractility k: %Y A270000 1 - A269804 %Y A270000 2 - A269805 %Y A270000 3 - A269806 %Y A270000 4 - A269807 %Y A270000 5 - A269808 %Y A270000 6 - A269809 %Y A270000 Cf. A269570 (binary fractility), A269982 (factorial fractility). %K A270000 nonn,easy %O A270000 2,4 %A A270000 _Clark Kimberling_ and _Peter J. C. Moses_, Mar 11 2016 %E A270000 Definition corrected by _Jack W Grahl_, Jun 27 2018 %E A270000 Edited by _M. F. Hasler_, Nov 05 2018