A270047 Decimal expansion of a constant related to the asymptotics of A137891.
4, 2, 1, 2, 2, 7, 7, 4, 2, 1, 1, 6, 8, 1, 5, 6, 0, 8, 1, 1, 6, 6, 2, 9, 2, 5, 5, 0, 1, 0, 5, 9, 5, 6, 6, 7, 9, 4, 9, 3, 7, 1, 7, 3, 8, 5, 5, 3, 7, 6, 6, 1, 0, 0, 2, 5, 8, 6, 8, 0, 4, 8, 4, 8, 9, 8, 4, 0, 4, 6, 8, 8, 2, 3, 3, 7, 7, 0, 1, 4, 3, 1, 3, 9, 7, 2, 4, 8, 7, 6, 5, 0, 3, 4, 0, 8, 8, 2, 4, 9, 5, 0, 1, 1, 2, 7
Offset: 2
Examples
42.12277421168156081166292550105956679493717385537661002586804848984...
Links
- Eric Weisstein's World of Mathematics, Graph Join
- Eric Weisstein's World of Mathematics, Hamiltonian Path
Crossrefs
Cf. A137891.
Programs
-
Mathematica
RealDigits[2*(BesselI[0, 4] + BesselI[1, 4]), 10, 120][[1]] (* Vaclav Kotesovec, Mar 16 2024 *)
Formula
Equals limit n->infinity A137891(n)/(n!)^2.
Equals 2*(BesselI(0,4) + BesselI(1,4)). - Vaclav Kotesovec, Mar 16 2024