This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A270060 #41 Jul 13 2025 10:59:29 %S A270060 0,0,1,1,3,3,6,7,9,11,14,15,19,22,23,28,30,34,36,41,42,51,49,57,55,68, %T A270060 64,75,71,84,79,95,89,106,92,116,104,127,116,134,121,150,130,160,143, %U A270060 172,148,188,156,193,177,209,177,226,185,231,210,246,207,269,218,272,239,287,238,312,250,317,279,320,271,359,283,355,316 %N A270060 Number of incomplete rectangles of area n. %C A270060 An incomplete rectangle is a six-sided figure obtained when two rectangles with different widths are coupled together so that two of the edges form a straight line. %C A270060 In other words, this shape is a rectangle from which a smaller rectangle has been removed from one corner. %C A270060 Incomplete rectangles which differ by a rotation and/or reflection are not counted as different. %C A270060 Also the number of integer partitions of n into parts of 2 distinct sizes, where any integer partition and its conjugate are considered equivalent. For example a(8)=7 counts (7,1), (6,2), (6,1,1), (5,3), (5,1,1,1), (4,2,2), and (3,3,2). %C A270060 The unit squares composing the incomplete rectangle can be viewed as the boxes of a Ferrers diagram of an integer partition of n with 2 different sizes of rows. A002133(n) counts all Ferrers diagrams with 2 different sizes of rows. A100073(n) counts all self-conjugate Ferrers diagrams with 2 different sizes of rows since these Ferrers diagrams look like a square with a smaller square removed from the corner. Thus a(n)=(A002133(n)+A100073(n))/2. _Lara Pudwell_, Apr 03 2016 %F A270060 a(n)=(A002133(n)+A100073(n))/2. See the integer partition comment above. _Lara Pudwell_, Apr 03 2016 %F A270060 G.f.: sum(sum(x^(i+j)/(2*(1-x^i)*(1-x^j))+x^(i^2-j^2)/2,j=1..i-1),i=1..infinity). See the integer partition comment above. _Lara Pudwell_, Apr 03 2016 %e A270060 n = 3 %e A270060 .___. %e A270060 | ._| %e A270060 |_| %e A270060 . %e A270060 n = 4 %e A270060 ._____. %e A270060 | .___| %e A270060 |_| %e A270060 . %e A270060 n = 5 %e A270060 ._______. ._____. ._____. %e A270060 | ._____| | ._| | .___| %e A270060 |_| |___| | | %e A270060 |_| %e A270060 . %e A270060 The three solutions for n = 6: %e A270060 XXXXX %e A270060 X %e A270060 ..... %e A270060 XXXX %e A270060 XX %e A270060 ..... %e A270060 XXXX %e A270060 X %e A270060 X %e A270060 ..... %p A270060 # see A067627(n,k=2). %o A270060 (Pseudocode) %o A270060 /* rectangle : LL = long side, SS = short side %o A270060 removed corner : L = long side, S = short side */ %o A270060 { %o A270060 int a[100]; %o A270060 int LL,SS,L,S,area; %o A270060 for(area:=1;area<=100;area++){ %o A270060 a[area]:=0; %o A270060 }; %o A270060 for(LL:=1;LL<=100;LL++){ %o A270060 for(SS:=1;SS<=LL;SS++){ %o A270060 for(L:=1;L<=LL;L++){ %o A270060 for(S:=1;S<=LL;S++){ %o A270060 area=LL*SS-L*S; %o A270060 if( area>=1 && area<=100 ){ %o A270060 if( L>=S || L<LL || S<SS ){ %o A270060 a[area]++; %o A270060 }; %o A270060 if( L<S || L<SS || S<LL || LL>SS ){ %o A270060 a[area]++; %o A270060 }; %o A270060 }; %o A270060 }; %o A270060 }; %o A270060 }; %o A270060 }; %o A270060 for(area:=1;area<=100;area++){ %o A270060 print a[area]; %o A270060 }; %o A270060 } %Y A270060 Cf. A038548 (number of complete rectangles of area n), A002133, A100073, A067627. %K A270060 nonn %O A270060 1,5 %A A270060 _Stanislav Mikusek_, Mar 09 2016