This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A270102 #35 May 19 2025 11:09:02 %S A270102 3,4,5,7,8,10,11,23,34,62,95,128,173,251,260,464,628,1267,1895,2057, %T A270102 2743,5102,7790,49163 %N A270102 Numbers k such that 3^k - k*2^k is prime. %C A270102 a(25) > 10^5. - _Michael S. Branicky_, Oct 13 2024 %e A270102 n = 4 is a term since 3^4 - 4*2^4 = 17 is prime. %p A270102 A270102:=n->`if`(isprime(3^n-n*2^n),n,NULL): seq(A270102(n),n=1..2000); # _Wesley Ivan Hurt_, May 08 2016 %t A270102 Select[Range[1, 1000], PrimeQ[3^# - #*2^#] &] (* _Vaclav Kotesovec_, Mar 11 2016 *) %o A270102 (MATLAB) %o A270102 if isprime(3^n - n*2^n) %o A270102 disp(n) %o A270102 end %o A270102 (Python) %o A270102 from gmpy2 import is_prime %o A270102 for n in range(5000): %o A270102 if(is_prime(3**n-n*2**n)):print(n,end=", ") %o A270102 # _Soumil Mandal_, May 08 2016 %o A270102 (PARI) is(n)=ispseudoprime(3^n-n*2^n) \\ _Charles R Greathouse IV_, Jun 06 2017 %Y A270102 Cf. A057468, A270104. %K A270102 nonn,more %O A270102 1,1 %A A270102 _Vardan Semerjyan_, Mar 11 2016 %E A270102 a(24) from _Giovanni Resta_, May 05 2016