This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A270142 #20 Dec 21 2022 12:01:09 %S A270142 4,16,64,256,1024,4096,16384,65536,262144,4,24,144,864,5184,31104, %T A270142 186624,1119744,6718464,40310784,16,96,576,3456,20736,124416,746496, %U A270142 4478976,26873856,161243136,64,384,2304,13824,82944,497664,2985984,17915904,107495424 %N A270142 a(n) = product of first k composites, with the i-th composite raised to the d-th power, where k = A055642(n) and d is the i-th digit of n. %C A270142 All terms are multiples of 4, since A002808(1) = 4 and the most significant digit of n is always nonzero. %C A270142 Does a term exist such that a(n) = n? Such a number would be the analog of a Meertens number when raising composites to the powers of the digits of n instead of raising primes to the powers of the digits. %C A270142 From _Chai Wah Wu_, Dec 15 2022: (Start) %C A270142 If a(n) is defined using digits of n in base b, then there are bases b and numbers n such that a(n) = n. For instance: %C A270142 base b n %C A270142 ------------------------------------------------ %C A270142 2 4, 24, 36, 24192000, 85155840 %C A270142 3 2592 %C A270142 4 4, 103680 %C A270142 6 20736 %C A270142 8 16, 256, 13824 %C A270142 12 1327104 %C A270142 16 21233664 %C A270142 23 24 %C A270142 24 746496 %C A270142 (End) %H A270142 Felix Fröhlich, <a href="/A270142/b270142.txt">Table of n, a(n) for n = 1..10000</a> %e A270142 a(12) = 144, since A002808(1) = 4, A002808(2) = 6 and 4^1 * 6^2 = 144. %o A270142 (PARI) composite(n) = my(i=0, c=2); while(1, if(!ispseudoprime(c), i++); if(i==n, return(c)); c++) %o A270142 compopowerprod(n) = my(d=digits(n)); for(k=1, #d, p=prod(i=1, #d, composite(i)^d[i])); p %o A270142 a(n) = compopowerprod(n) %o A270142 (Python) %o A270142 from math import prod %o A270142 from sympy import composite %o A270142 def A270142(n): return prod(composite(i)**int(d) for i, d in enumerate(str(n),1)) # _Chai Wah Wu_, Dec 09 2022 %Y A270142 Cf. A189398, A246532. %K A270142 nonn,base,easy %O A270142 1,1 %A A270142 _Felix Fröhlich_, Mar 12 2016