cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270151 Discriminator of the Fibonacci numbers; least positive integer r such that F(2), F(3), ..., F(n+1) are all incongruent modulo r.

This page as a plain text file.
%I A270151 #18 Jul 23 2025 15:40:06
%S A270151 1,2,3,5,8,9,14,14,15,15,15,30,30,30,30,30,35,35,35,35,59,59,59,59,79,
%T A270151 79,83,83,83,83,83,83,120,120,120,157,157,157,157,173,173,173,173,173,
%U A270151 193,193,193,193,193,193,193,193,193,193,193,311,311,311,311,337,337,337,337,337,409,409,409,409,431
%N A270151 Discriminator of the Fibonacci numbers; least positive integer r such that F(2), F(3), ..., F(n+1) are all incongruent modulo r.
%H A270151 Alois P. Heinz, <a href="/A270151/b270151.txt">Table of n, a(n) for n = 1..5000</a>
%H A270151 Arnold, L. K.; Benkoski, S. J.; and McCabe, B. J.; <a href="http://www.jstor.org/stable/2323651">The discriminator (a simple application of Bertrand's postulate)</a>. Amer. Math. Monthly 92 (1985), 275-277.
%H A270151 A. de Clercq, F. Luca, L. Martirosyan, M. Matthis, P. Moree, M.A. Stoumen and M. Weiß, <a href="https://arxiv.org/abs/2003.01559">Binary recurrences for which powers of two are discriminating moduli</a>, arXiv:2003.01559 [math.NT], 2020. See Table 1 p. 7.
%Y A270151 Cf. A016726.
%K A270151 nonn
%O A270151 1,2
%A A270151 _Jeffrey Shallit_, Mar 12 2016