This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A270190 #16 Jul 11 2017 17:15:45 %S A270190 9,11,15,16,18,21,23,32,36,37,39,40,46,47,51,54,55,56,58,67,71,73,74, %T A270190 76,84,86,91,96,97,99,100,102,103,105,107,108,110,111,114,118,119,121, %U A270190 123,129,130,133,139,160,161,164,165,167,168,170,174,179,180,184,185,187,188,194,195,197,199,200,202,203,205,208,210 %N A270190 Numbers n for which prime(n+1)-prime(n) is a multiple of three. %C A270190 Numbers n for which A001223(n) = 0 modulo 3. %C A270190 See comments in A270189 and A269364. %C A270190 Equivalently, numbers n for which prime(n+1)-prime(n) is a multiple of six. See A276414 for runs of increasing length of consecutive integers. - _M. F. Hasler_, Sep 03 2016 %H A270190 Antti Karttunen, <a href="/A270190/b270190.txt">Table of n, a(n) for n = 1..10000</a> %H A270190 Terence Tao, <a href="https://terrytao.wordpress.com/2016/03/14/biases-between-consecutive-primes/">Biases between consecutive primes</a>, blog entry March 14, 2016 %F A270190 Other identities. For all n >= 1: %F A270190 a(n) = A269399(n) + 6. %F A270190 A269850(a(n)) = n. %e A270190 9 is present as the difference between A000040(9+1) = 29 and A000040(9) = 23 is 6, a multiple of three. %t A270190 Select[Range@ 210, Divisible[Prime[# + 1] - Prime@ #, 3] &] (* _Michael De Vlieger_, Mar 17 2016 *) %t A270190 PrimePi/@Select[Partition[Prime[Range[350]],2,1],Divisible[#[[2]]-#[[1]], 3]&][[All,1]] (* _Harvey P. Dale_, Jul 11 2017 *) %o A270190 (Scheme, with _Antti Karttunen_'s IntSeq-library) %o A270190 (define A270190 (ZERO-POS 1 1 A137264)) %o A270190 (PARI) isok(n) = ((prime(n+1) - prime(n)) % 3) == 0; \\ _Michel Marcus_, Mar 17 2016 %Y A270190 Complement: A270189. %Y A270190 Positions of zeros in A137264. %Y A270190 Left inverse: A269850. %Y A270190 Cf. also A001223, A269364, A270191, A270192, A269399. %K A270190 nonn %O A270190 1,1 %A A270190 _Antti Karttunen_, Mar 16 2016