A270218 Number of active (ON, black) cells at stage 2^n-1 of the two-dimensional cellular automaton defined by "Rule 129", based on the 5-celled von Neumann neighborhood.
1, 4, 28, 140, 620, 2604, 10668, 43180, 173740, 697004, 2792108, 11176620, 44722860, 178924204, 715762348, 2863180460
Offset: 0
References
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
Links
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- S. Wolfram, A New Kind of Science
- Index entries for sequences related to cellular automata
- Index to 2D 5-Neighbor Cellular Automata
- Index to Elementary Cellular Automata
Crossrefs
Cf. A270217.
Programs
-
Mathematica
CAStep[rule_,a_]:=Map[rule[[10-#]]&,ListConvolve[{{0,2,0},{2,1,2},{0,2,0}},a,2],{2}]; code=129; stages=128; rule=IntegerDigits[code,2,10]; g=2*stages+1; (* Maximum size of grid *) a=PadLeft[{{1}},{g,g},0,Floor[{g,g}/2]]; (* Initial ON cell on grid *) ca=a; ca=Table[ca=CAStep[rule,ca],{n,1,stages+1}]; PrependTo[ca,a]; (* Trim full grid to reflect growth by one cell at each stage *) k=(Length[ca[[1]]]+1)/2; ca=Table[Table[Part[ca[[n]][[j]],Range[k+1-n,k-1+n]],{j,k+1-n,k-1+n}],{n,1,k}]; on=Map[Function[Apply[Plus,Flatten[#1]]],ca] (* Count ON cells at each stage *) Part[on,2^Range[0,Log[2,stages]]] (* Extract relevant terms *)
Formula
Conjectures from Colin Barker, Mar 13 2016: (Start)
a(n) = 4*(1-3*2^n+2^(1+2*n))/3.
a(n) = 7*a(n-1)-14*a(n-2)+8*a(n-3) for n>3.
G.f.: (1-3*x+14*x^2-8*x^3) / ((1-x)*(1-2*x)*(1-4*x)).
(End)
a(n) = 4*A006095(n+1) (conjectured). - Michal Stajszczak, May 20 2020
Extensions
a(8)-a(15) from Lars Blomberg, Apr 30 2016
Comments