cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270225 Lesser of twin primes where both primes are the sum of three squares.

This page as a plain text file.
%I A270225 #21 Sep 08 2022 08:46:16
%S A270225 3,11,17,41,59,107,137,179,227,281,347,419,521,569,617,641,659,809,
%T A270225 827,857,881,1019,1049,1091,1289,1427,1451,1481,1619,1667,1697,1721,
%U A270225 1787,1931,2027,2081,2129,2267,2339,2657,2729,2801,2969,3251,3257,3299,3329,3371,3467,3539
%N A270225 Lesser of twin primes where both primes are the sum of three squares.
%H A270225 Chai Wah Wu, <a href="/A270225/b270225.txt">Table of n, a(n) for n = 1..10000</a>
%F A270225 Primes p such that p == 1 or 3 mod 8 and p+2 is prime. - _Chai Wah Wu_, Jul 18 2016
%e A270225 3 is a term because 3 = 1^2 + 1^2 + 1^2 and 5 = 0^2 + 1^2 + 2^2.
%e A270225 17 is a term because 17 = 2^2 + 2^2 + 3^2 and 19 = 1^2 + 3^2 + 3^2.
%e A270225 41 is a term because 41 = 3^2 + 4^2 + 4^2 and 43 = 3^2 + 3^2 + 5^2.
%e A270225 59 is a term because 59 = 3^2 + 5^2 + 5^2 and 61 = 3^2 + 4^2 + 6^2.
%t A270225 Select[Prime[Range[500]], MemberQ[{1, 3}, Mod[#, 8]] && PrimeQ[# + 2] &] (* _Vincenzo Librandi_, Jul 18 2016 *)
%o A270225 (PARI) isA004215(n) = my(fouri, j) ; fouri=1 ; while( n >=7*fouri, if( n % fouri ==0, j= n/fouri-7 ; if( j % 8==0, return(1) ) ; ); fouri *= 4 ; ) ; return(0);
%o A270225 t(n, p=3) = { while( p+2 < (p=nextprime( p+1 )) || n-->0, ); p-2}
%o A270225 for(n=1, 1e2, if(!isA004215(t(n)) && !isA004215(t(n)+2), print1(t(n), ", ")));
%o A270225 (Python)
%o A270225 from sympy import prime, isprime
%o A270225 A270225_list = [p for p in (prime(i) for i in range(2,10**3)) if p % 8 not in {5,7} and isprime(p+2)] # _Chai Wah Wu_, Jul 18 2016
%o A270225 (Magma) [p: p in PrimesUpTo(4000) | IsPrime(p+2) and  p mod 8 in [1,3]]; // _Vincenzo Librandi_, Jul 18 2016
%Y A270225 Cf. A001359, A004215, A269840.
%K A270225 nonn
%O A270225 1,1
%A A270225 _Altug Alkan_, Mar 13 2016