This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A270227 #21 Feb 16 2025 08:33:31 %S A270227 1,2,2,4,7,4,10,32,32,10,26,193,370,193,26,76,1382,5950,5950,1382,76, %T A270227 232,11719,122984,270529,122984,11719,232,764,112604,3175696,16873930, %U A270227 16873930,3175696,112604,764,2620,1221889,98815588,1384880065,3337807996,1384880065,98815588,1221889,2620 %N A270227 Array read by antidiagonals: T(n,m) is the number of matchings in the rook graph K_n X K_m. %C A270227 Observations: (for n+m <= 32) %C A270227 Examination of values modulus a small prime yields several patterns. %C A270227 T(n,m) == (n+1)*(m+1) (mod 2) for n+m>2. %C A270227 T(n,m) == T(n,m+6) (mod 3). %C A270227 T(n,m) is not divisible by 3. %C A270227 T(n,m) == 0 (mod 5) for n==4 (mod 5) and m<>2 and except when m=n=4. %C A270227 T(5,m) == 0 (mod 208) for m >= 13. %C A270227 T(6,m) == 0 (mod 19) for m >= 19. %H A270227 Andrew Howroyd, <a href="/A270227/b270227.txt">Table of n, a(n) for n = 1..496</a> %H A270227 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/IndependentEdgeSet.html">Independent Edge Set</a> %H A270227 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Matching.html">Matching</a> %H A270227 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RookGraph.html">Rook Graph</a> %e A270227 The start of the sequence as table: %e A270227 * 1 2 4 10 26 76 ... %e A270227 * 2 7 32 193 1382 11719 ... %e A270227 * 4 32 370 5950 122984 3175696 ... %e A270227 * 10 193 5950 270529 16873930 1384880065 ... %e A270227 * 26 1382 122984 168739305 3337807996 909046586596 ... %e A270227 * 76 11719 3175696 1384880065 909046586596 855404716021831 ... %e A270227 * ... %Y A270227 Main diagonal is A270228. Rows include A000085, A270229. %K A270227 nonn,tabl %O A270227 1,2 %A A270227 _Andrew Howroyd_, Mar 13 2016