A270244 Lesser of twin primes such that the sum of the twin prime pair is the sum of 2 positive cubes.
1871, 8819, 74609, 77237, 81647, 93131, 98927, 102059, 108107, 110501, 152837, 180287, 220859, 241919, 256031, 275939, 309851, 319679, 422099, 457001, 459647, 462419, 490247, 530711, 568151, 635291, 660851, 667547, 721619, 729269, 761669, 843677, 859679, 909971, 948401, 1037087, 1041119
Offset: 1
Keywords
Examples
1871 is a term because 1871 + 1873 = 10^3 + 14^3. 8819 is a term because 8819 + 8821 = 4^3 + 26^3. 74609 is a term because 74609 + 74611 = 7^3 + 53^3.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Select[Prime@ Range[10^5], PrimeQ[# + 2] &], Length[PowersRepresentations[2 # + 2, 2, 3] /. {0, } -> Nothing] > 0 &] (* _Michael De Vlieger, Mar 15 2016 *)
-
PARI
isA003325(n) = for(k=1, sqrtnint(n\2, 3), ispower(n-k^3, 3) && return(1)); t(n,p=3) = {while( p+2 < (p=nextprime( p+1 )) || n-->0, ); p-2} for(n=1, 1e4, if(isA003325(2*t(n)+2), print1(t(n), ", ")));