cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A270672 Löschian numbers (A003136) that are multiples of 3.

Original entry on oeis.org

0, 3, 9, 12, 21, 27, 36, 39, 48, 57, 63, 75, 81, 84, 93, 108, 111, 117, 129, 144, 147, 156, 171, 183, 189, 192, 201, 219, 225, 228, 237, 243, 252, 273, 279, 291, 300, 309, 324, 327, 333, 336, 351, 363, 372, 381, 387, 399, 417, 432, 441, 444, 453, 468, 471, 489, 507, 513, 516, 525, 543, 549
Offset: 1

Views

Author

Altug Alkan, Mar 21 2016

Keywords

Comments

Numbers of the form 3*(x^2 + xy + y^2).
Intersection of A008585 and A003136.

Examples

			21 is a term because 21 = 3*7 = 4^2 + 4*1 + 1^2.
		

Crossrefs

Cf. Loeschian numbers: A003136 (all), A270248 (2*k), A266836 (2*k+1), A202822 (3*k+1), A260682 (6*k+1).

Programs

  • Mathematica
    Select[Range[0, 600], Resolve[Exists[{x, y}, Reduce[# == 3 (x^2 + x y + y^2), {x, y}, Integers]]] &] (* Michael De Vlieger, Mar 21 2016 *)
  • PARI
    x='x+O('x^1000); p=eta(x)^3/eta(x^3); for(n=0, 999, if(polcoeff(p, n) != 0 && n % 3 == 0, print1(n, ", ")));
    
  • PARI
    list(lim)=my(v=List(), y, t); for(x=0, sqrtint(lim\3), my(y=x, t); while((t=x^2+x*y+y^2)<=lim, listput(v, t); y+=3)); Set(v) \\ Charles R Greathouse IV, Jul 05 2017
Showing 1-1 of 1 results.