A270249 Greater of a pair of twin primes (r,s=r+2) where s is of the form p^2 + pq + q^2 and p and q are also twin primes.
109, 433, 2056753, 3121201, 3577393, 26462701, 37340353, 43823053, 128786113, 202705201, 304093873, 888345793, 1005988033, 1399680001, 1537437133, 2282300173, 2310187501, 2444964913, 2929312513, 3564542701, 5831255233, 7950571201, 8512439473, 9346947373, 9648752833, 12627464653, 15624660673
Offset: 1
Keywords
Examples
109 is a term because 109 and 107 are twin primes and 109 = 5^2 + 5*7 + 7^2, 5 and 7 are also twin primes. 433 is a term because 433 and 431 are twin primes and 433 = 11^2 + 11*13 + 13^2, 11 and 13 are also twin primes.
Programs
-
PARI
t(n, p=3) = {while( p+2 < (p=nextprime( p+1 )) || n-->0, ); p-2} for(n=1, 1e3, if(ispseudoprime(P=(3*t(n)^2 + 6*t(n) + 4)) && ispseudoprime(P-2), print1(P, ", ")));
-
Python
from itertools import islice from sympy import isprime, nextprime def A270249_gen(): # generator of terms p, q = 2, 3 while True: if q-p == 2 and isprime(s:=3*p*q+4) and isprime(s-2): yield s p, q = q, nextprime(q) A270249_list = list(islice(A270249_gen(),20)) # Chai Wah Wu, Feb 27 2023
Comments