cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270269 Prime numbers with locations of right angle turns in the Ulam square spiral that are vertices of isosceles right triangles.

This page as a plain text file.
%I A270269 #28 Sep 12 2017 21:31:40
%S A270269 3,5,7,31,37,43,8011,8101,8191,920641,921601,922561,3894703,3896677,
%T A270269 3898651,5902471,5904901,5907331,7450171,7452901,7455631,7482961,
%U A270269 7485697,7488433,36066031,36072037,36078043,37155121,37161217,37167313,39759331,39765637,39771943
%N A270269 Prime numbers with locations of right angle turns in the Ulam square spiral that are vertices of isosceles right triangles.
%C A270269 See the illustration for more information.
%C A270269 Subsequence of A172979. This sequence is probably infinite.
%C A270269 An interesting property: the sequence of the differences between prime numbers that are vertices for each triangle is the sequence {2, 6, 90, 960, 1974, 2430, 2730, 2736, 6006, 6096, 6306, ...} = A087277: numbers n such that the three second-degree cyclotomic polynomials x^2 + 1, x^2 - x + 1 and x^2 + x + 1 are simultaneously prime.
%C A270269 For example:
%C A270269 2 = 5 - 3 = 7 - 5;
%C A270269 6 = 37 - 31 = 43 - 37;
%C A270269 90 = 8101 - 8011 = 8191 - 8101.
%C A270269 Consequence: a(3n) + A087277(n) is a square. The corresponding sequence of the squares is {3^2, 7^2, 91^2, 961^2, 1975^2, 2431^2, 2731^2, 2737^2, 6007^2, ...}.
%C A270269 Examples:
%C A270269 a(3) + A087277(1) = 7 + 2 = 3^2;
%C A270269 a(6) + A087277(2) = 43 + 6 = 7^2;
%C A270269 a(9) + A087277(3) = 8191 + 90 = 91^2.
%H A270269 Michel Lagneau, <a href="/A270269/a270269.pdf">Illustration</a>
%p A270269 nn:=20000:T:=array(1..nn):a0:=1:kk:=0:
%p A270269 for p from 1 to nn do :
%p A270269    a1:=a0+floor(p/2):a0:=a1:
%p A270269     if  isprime(a1)
%p A270269      then
%p A270269      kk:=kk+1:T[kk]:=a1:
%p A270269      else
%p A270269     fi:
%p A270269   od:
%p A270269    for n from 1 to kk-2 do:
%p A270269     d1:=T[n+2]-T[n+1]:d2:=T[n+1]-T[n]:
%p A270269      if d1=d2
%p A270269      then
%p A270269       printf("%d %d %d \n", T[n], T[n+1], T[n+2]):
%p A270269       else
%p A270269      fi:
%p A270269    od:
%Y A270269 Cf. A087277, A172979.
%K A270269 nonn
%O A270269 1,1
%A A270269 _Michel Lagneau_, Mar 14 2016