A270337 Composite numbers equal to the number of divisors of one of their powers.
9, 25, 28, 40, 45, 49, 81, 121, 153, 169, 225, 289, 325, 343, 361, 441, 529, 625, 640, 841, 961, 976, 1089, 1225, 1369, 1521, 1681, 1849, 2133, 2197, 2209, 2401, 2541, 2601, 2809, 3025, 3249, 3481, 3721, 4225, 4489, 4753, 4761, 4851, 5041, 5329, 5929, 6241, 6348, 6561, 6859, 6889
Offset: 1
Examples
9 = d(9^4); 28 = d(28^3); 153 = d(153^8); etc.
Links
- Paolo P. Lava, First 50 terms with their powers
Programs
-
Maple
with(numtheory): P:=proc(q) local a,k,n; for n from 2 to q do if not isprime(n) then a:=tau(n); k:=0; while a
-
Mathematica
nn = 2000; Select[Select[Range@ nn, CompositeQ], Function[k, (SelectFirst[k^Range[nn/2], DivisorSigma[0, #] == k &] /. n_ /; MissingQ@ n -> 0) > 0]] (* Michael De Vlieger, Mar 17 2016, Version 10.2 *)
Comments