cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270348 Denominators of r-Egyptian fraction expansion for sqrt(1/3), where r = (1,1/2,1/4,1/8,...)

This page as a plain text file.
%I A270348 #13 Feb 16 2025 08:33:31
%S A270348 2,7,43,1161,796510,1101781866330,648667164391834988511313,
%T A270348 521313118065995695198529265268104396429334449023,
%U A270348 177042477384698216444912803612486097958997328262217304760270340328784709181787835108737458616981
%N A270348 Denominators of r-Egyptian fraction expansion for sqrt(1/3), where r = (1,1/2,1/4,1/8,...)
%C A270348 Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1).  Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k).  Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ... , the r-Egyptian fraction for x.
%C A270348 See A269993 for a guide to related sequences.
%H A270348 Clark Kimberling, <a href="/A270348/b270348.txt">Table of n, a(n) for n = 1..11</a>
%H A270348 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/EgyptianFraction.html">Egyptian Fraction</a>
%H A270348 <a href="/index/Ed#Egypt">Index entries for sequences related to Egyptian fractions</a>
%e A270348 sqrt(1/3) = 1/2 + 1/(2*7) + 1/(4*43) + ...
%t A270348 r[k_] := 2/2^k; f[x_, 0] = x; z = 10;
%t A270348 n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
%t A270348 f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
%t A270348 x = Sqrt[1/3]; Table[n[x, k], {k, 1, z}]
%o A270348 (PARI) r(k) = 2/2^k;
%o A270348 f(k,x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x););
%o A270348 a(k, x=sqrt(1/3)) = ceil(r(k)/f(k-1, x)); \\ _Michel Marcus_, Mar 18 2016
%Y A270348 Cf. A269993.
%K A270348 nonn,frac,easy
%O A270348 1,1
%A A270348 _Clark Kimberling_, Mar 17 2016