This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A270353 #16 Feb 16 2025 08:33:31 %S A270353 8,31,540,189864,22502468823,547694780221174920178, %T A270353 287920070745319667821031437298831171428290, %U A270353 271667810016366767427285213650617821610883263237085072498040538105208873088855853524 %N A270353 Denominators of r-Egyptian fraction expansion for Pi - 3, where r = (1, 1/2, 1/4, 1/8, ...) %C A270353 Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ..., the r-Egyptian fraction for x. %C A270353 See A269993 for a guide to related sequences. %H A270353 Clark Kimberling, <a href="/A270353/b270353.txt">Table of n, a(n) for n = 1..11</a> %H A270353 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/EgyptianFraction.html">Egyptian Fraction</a> %H A270353 <a href="/index/Ed#Egypt">Index entries for sequences related to Egyptian fractions</a> %e A270353 Pi - 3 = 1/8 + 1/(2*31) + 1/(4*540) + ... %t A270353 r[k_] := 2/2^k; f[x_, 0] = x; z = 10; %t A270353 n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] %t A270353 f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] %t A270353 x = Pi - 3; Table[n[x, k], {k, 1, z}] %o A270353 (PARI) r(k) = 2/2^k; %o A270353 f(k,x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x);); %o A270353 a(k, x=Pi-3) = ceil(r(k)/f(k-1, x)); \\ _Michel Marcus_, Mar 18 2016 %Y A270353 Cf. A269993. %K A270353 nonn,frac,easy %O A270353 1,1 %A A270353 _Clark Kimberling_, Mar 17 2016