A270355 Denominators of r-Egyptian fraction expansion for e - 2, where r = (1, 1/2, 1/4, 1/8, ...)
2, 3, 5, 78, 4962, 15925310, 303532967750376, 72884922416996896007616951849, 3238110775186648021853203185875679911508503009261997468560, 7716186732679740909751872277405382774000613384297298421745471878603639986756704754013029661605882827711280194233739
Offset: 1
Examples
1/e = 1/2 + 1/(2*3) + 1/(4*5) + ...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..12
- Eric Weisstein's World of Mathematics, Egyptian Fraction
- Index entries for sequences related to Egyptian fractions
Crossrefs
Cf. A269993.
Programs
-
Mathematica
r[k_] := 2/2^k; f[x_, 0] = x; z = 10; n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] x = E - 2; Table[n[x, k], {k, 1, z}]
-
PARI
r(k) = 2/2^k; f(k,x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x);); a(k, x=exp(1)-2) = ceil(r(k)/f(k-1, x));
Comments