A270370 a(n) = Sum_{k=0..n} (-1)^k*floor(k^(1/3)).
0, -1, 0, -1, 0, -1, 0, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 2, -2, 2, -2, 2, -2
Offset: 0
Examples
a(5) = [0^(1/3)]-[1^(1/3)]+[2^(1/3)]-[3^(1/3)]+[4^(1/3)]-[5^(1/3)] = 0-1+1-1+1-1 = -1, letting [] denote the floor function.
Crossrefs
Programs
-
Mathematica
Print[Table[Sum[(-1)^i*Floor[i^(1/3)],{i,0,n}],{n,0,100}]]
-
PARI
a(n)=sum(i=0,n,(-1)^i*sqrtnint(i,3))
-
PARI
a(n)=sqrtnint(n,3)*(-1)^n/2-((-1)^(sqrtnint(n,3)+1)+1)/4
Formula
a(n) = floor(n^(1/3))*(-1)^n/2 - ((-1)^(floor(n^(1/3))+1)+1)/4.