This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A270382 #12 Feb 16 2025 08:33:31 %S A270382 2,1,3,10,97,24851,510157381,695243618523592916, %T A270382 2521217027896573870788274798987969315, %U A270382 200759268273854851798439056384882383919258596635924900200845873520031055851 %N A270382 Denominators of r-Egyptian fraction expansion for (1/2)^(1/3), where r = (1,1/4,1/9,1/16,...). %C A270382 Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ..., the r-Egyptian fraction for x. %C A270382 See A269993 for a guide to related sequences. %H A270382 Clark Kimberling, <a href="/A270382/b270382.txt">Table of n, a(n) for n = 1..13</a> %H A270382 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/EgyptianFraction.html">Egyptian Fraction</a> %H A270382 <a href="/index/Ed#Egypt">Index entries for sequences related to Egyptian fractions</a> %e A270382 (1/2)^(1/3) = 1/2 + 1/(4*1) + 1/(9*3) + 1/(16*10) + ... %t A270382 r[k_] := 1/k^2; f[x_, 0] = x; z = 10; %t A270382 n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] %t A270382 f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] %t A270382 x = (1/2)^(1/3); Table[n[x, k], {k, 1, z}] %o A270382 (PARI) r(k) = 1/k^2; %o A270382 f(k,x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x);); %o A270382 a(k, x=(1/2)^(1/3)) = ceil(r(k)/f(k-1, x)); \\ _Michel Marcus_, Mar 22 2016 %Y A270382 Cf. A269993, A270714. %K A270382 nonn,frac,easy %O A270382 1,1 %A A270382 _Clark Kimberling_, Mar 22 2016