cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270389 Numbers that are equal to the sum of the number of divisors of their k first powers, for some k.

This page as a plain text file.
%I A270389 #27 Jun 09 2017 09:19:56
%S A270389 1,2,5,64,203,505,524,649,818,1295,2469,2869,4355,5048,6083,10415,
%T A270389 14909,15021,22329,27433,29189,29369,35719,38023,44099,48229,56372,
%U A270389 85329,85343,89270
%N A270389 Numbers that are equal to the sum of the number of divisors of their k first powers, for some k.
%H A270389 Charles R Greathouse IV, <a href="/A270389/b270389.txt">Table of n, a(n) for n = 1..200</a>
%H A270389 Paolo P. Lava, <a href="/A270389/a270389.txt">First 30 terms with k value</a>
%F A270389 Solutions of the equation n = Sum_{i=1..k}{d(n^k)}.
%e A270389 d(1^1) = 1;
%e A270389 d(2^1) = 2;
%e A270389 d(5^1) + d(5^2) = 2 + 3 = 5;
%e A270389 d(64^1) + d(64^2) + d(64^3) + d(64^4) = 7 + 13 + 19 + 25 = 64;
%e A270389 d(203^1) + d(203^2) + d(203^3)+ d(203^4)+ d(203^5)+ d(203^6)+ d(203^7) = 4 + 9 + 16 + 25 + 36 + 49 + 64 = 203.
%p A270389 with(numtheory): P:=proc(q) local a,k,n;
%p A270389 for n from 1 to q do a:=0; k:=0;
%p A270389 while a<n do k:=k+1; a:=a+tau(n^k); od; if n=a then print(n); fi;
%p A270389 od; end: P(10^6);
%t A270389 Select[Range[10^4], Function[n, IntegerQ@ SelectFirst[Range@ 25, Total@ Map[DivisorSigma[0, #] &, n^Range[#]] == n &]]] (* _Michael De Vlieger_, Mar 17 2016, Version 10 *)
%o A270389 (PARI) is(n)=my(e=factor(n)[,2],k,t); while(t<n, k++; t += prod(i=1,#e, k*e[i]+1)); t==n \\ _Charles R Greathouse IV_, Mar 31 2016
%Y A270389 Cf. A000005, A270713.
%K A270389 nonn
%O A270389 1,2
%A A270389 _Paolo P. Lava_, Mar 16 2016