A270405 Denominators of r-Egyptian fraction expansion for (1/2)^(1/3), where r(k) = 1/Fibonacci(k+1).
2, 2, 8, 99, 9153, 134325943, 17980902816814494, 336913028495678415812394391065577, 70730509948452535771375914216285436007372776802180962851035180747
Offset: 1
Examples
(1/2)^(1/3) = 1/2 + 1/(2*2) + 1/(3*8) + 1/(5*99) + ...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..12
- Eric Weisstein's World of Mathematics, Egyptian Fraction
- Index entries for sequences related to Egyptian fractions
Programs
-
Mathematica
r[k_] := 1/Fibonacci[k+1]; f[x_, 0] = x; z = 10; n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] x = (1/2)^(1/3); Table[n[x, k], {k, 1, z}]
Comments