This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A270406 #20 Aug 10 2018 15:47:32 %S A270406 1,5,22,10,93,167,386,1720,483,1586,14065,15018,6476,100156,258972, %T A270406 56628,26333,649950,3288327,2668750,106762,3944928,34374186,66449432, %U A270406 12317877,431910,22764165,313530000,1171704435,792534015,1744436,126264820,2583699888,16476937840,26225260226,4304016990 %N A270406 Triangle read by rows: T(n,g) is the number of rooted maps with n edges and 2 faces on an orientable surface of genus g. %C A270406 Row n contains floor((n+1)/2) terms. %H A270406 Gheorghe Coserea, <a href="/A270406/b270406.txt">Rows n = 1..101, flattened</a> %H A270406 Sean R. Carrell, Guillaume Chapuy, <a href="http://arxiv.org/abs/1402.6300">Simple recurrence formulas to count maps on orientable surfaces</a>, arXiv:1402.6300 [math.CO], 2014. %e A270406 Triangle starts: %e A270406 n\g [0] [1] [2] [3] [4] %e A270406 [1] 1; %e A270406 [2] 5; %e A270406 [3] 22, 10; %e A270406 [4] 93, 167; %e A270406 [5] 386, 1720, 483; %e A270406 [6] 1586, 14065, 15018; %e A270406 [7] 6476, 100156, 258972, 56628; %e A270406 [8] 26333, 649950, 3288327, 2668750; %e A270406 [9] 106762, 3944928, 34374186, 66449432, 12317877; %e A270406 [10] 431910, 22764165, 313530000, 1171704435, 792534015; %e A270406 [11] ... %t A270406 Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n<0 || f<0 || g<0 = 0; %t A270406 Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1) ((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3) (2n-2) (2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1) (2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]); %t A270406 Table[Table[Q[n, 2, g], {g, 0, (n+1)/2-1}], {n, 1, 11}] // Flatten (* _Jean-François Alcover_, Aug 10 2018 *) %o A270406 (PARI) %o A270406 N = 10; F = 2; gmax(n) = n\2; %o A270406 Q = matrix(N + 1, N + 1); %o A270406 Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) }; %o A270406 Qset(n, g, v) = { Q[n+1, g+1] = v }; %o A270406 Quadric({x=1}) = { %o A270406 Qset(0, 0, x); %o A270406 for (n = 1, length(Q)-1, for (g = 0, gmax(n), %o A270406 my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g), %o A270406 t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1), %o A270406 t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g, %o A270406 (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i)))); %o A270406 Qset(n, g, (t1 + t2 + t3) * 6/(n+1)))); %o A270406 }; %o A270406 Quadric('x + O('x^(F+1))); %o A270406 concat(vector(N+2-F, n, vector(1 + gmax(n-1), g, polcoeff(Qget(n+F-2, g-1), F)))) %Y A270406 Columns k=0-1 give: A000346, A006295. %K A270406 nonn,tabf %O A270406 1,2 %A A270406 _Gheorghe Coserea_, Mar 16 2016