This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A270407 #22 Oct 18 2018 05:11:19 %S A270407 2,22,164,70,1030,1720,5868,24164,6468,31388,256116,258972,160648, %T A270407 2278660,5554188,1169740,795846,17970784,85421118,66449432,3845020, %U A270407 129726760,1059255456,1955808460,351683046,18211380,875029804,11270290416,40121261136,26225260226 %N A270407 Triangle read by rows: T(n,g) is the number of rooted maps with n edges and 3 faces on an orientable surface of genus g. %C A270407 Row n contains floor(n/2) terms. %H A270407 Gheorghe Coserea, <a href="/A270407/b270407.txt">Rows n = 2..102, flattened</a> %H A270407 Sean R. Carrell, Guillaume Chapuy, <a href="http://arxiv.org/abs/1402.6300">Simple recurrence formulas to count maps on orientable surfaces</a>, arXiv:1402.6300 [math.CO], 2014. %e A270407 Triangle starts: %e A270407 n\g [0] [1] [2] [3] [4] %e A270407 [2] 2; %e A270407 [3] 22; %e A270407 [4] 164, 70; %e A270407 [5] 1030, 1720; %e A270407 [6] 5868, 24164, 6468; %e A270407 [7] 31388, 256116, 258972; %e A270407 [8] 160648, 2278660, 5554188, 1169740; %e A270407 [9] 795846, 17970784, 85421118, 66449432; %e A270407 [10] 3845020, 129726760, 1059255456, 1955808460, 351683046; %e A270407 [11] 18211380, 875029804, 11270290416, 40121261136, 26225260226; %e A270407 [12] ... %t A270407 Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0; %t A270407 Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1) ((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3) (2n-2) (2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1) (2l-1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]); %t A270407 T[n_, g_] := Q[n, 3, g]; %t A270407 Table[T[n, g], {n, 2, 11}, {g, 0, Quotient[n, 2]-1}] // Flatten (* _Jean-François Alcover_, Oct 18 2018 *) %o A270407 (PARI) %o A270407 N = 11; F = 3; gmax(n) = n\2; %o A270407 Q = matrix(N + 1, N + 1); %o A270407 Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) }; %o A270407 Qset(n, g, v) = { Q[n+1, g+1] = v }; %o A270407 Quadric({x=1}) = { %o A270407 Qset(0, 0, x); %o A270407 for (n = 1, length(Q)-1, for (g = 0, gmax(n), %o A270407 my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g), %o A270407 t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1), %o A270407 t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g, %o A270407 (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i)))); %o A270407 Qset(n, g, (t1 + t2 + t3) * 6/(n+1)))); %o A270407 }; %o A270407 Quadric('x + O('x^(F+1))); %o A270407 concat(vector(N+2-F, n, vector(1 + gmax(n-1), g, polcoeff(Qget(n+F-2, g-1), F)))) %Y A270407 Columns k=0-1 give: A000184, A006296. %K A270407 nonn,tabf %O A270407 2,1 %A A270407 _Gheorghe Coserea_, Mar 16 2016