This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A270408 #17 Oct 18 2018 06:23:12 %S A270408 5,93,1030,420,8885,14065,65954,256116,66066,442610,3392843,3288327, %T A270408 2762412,36703824,85421118,17454580,16322085,344468530,1558792200, %U A270408 1171704435,92400330,2908358552,22555934280,40121261136,7034538511,505403910,22620890127,276221817810,945068384880,600398249550 %N A270408 Triangle read by rows: T(n,g) is the number of rooted maps with n edges and 4 faces on an orientable surface of genus g. %C A270408 Row n contains floor((n-1)/2) terms. %H A270408 Gheorghe Coserea, <a href="/A270408/b270408.txt">Rows n = 3..103, flattened</a> %H A270408 Sean R. Carrell, Guillaume Chapuy, <a href="http://arxiv.org/abs/1402.6300">Simple recurrence formulas to count maps on orientable surfaces</a>, arXiv:1402.6300 [math.CO], 2014. %e A270408 Triangle starts: %e A270408 n\g [0] [1] [2] [3] [4] %e A270408 [3] 5; %e A270408 [4] 93; %e A270408 [5] 1030, 420; %e A270408 [6] 8885, 14065; %e A270408 [7] 65954, 256116, 66066; %e A270408 [8] 442610, 3392843, 3288327; %e A270408 [9] 2762412, 36703824, 85421118, 17454580; %e A270408 [10] 16322085, 344468530, 1558792200, 1171704435; %e A270408 [11] 92400330, 2908358552, 22555934280, 40121261136, 7034538511; %e A270408 [12] ... %t A270408 Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0; %t A270408 Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1) ((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3) (2n-2) (2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1) (2l-1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]); %t A270408 T[n_, g_] := Q[n, 4, g]; %t A270408 Table[T[n, g], {n, 3, 12}, {g, 0, Quotient[n-1, 2]-1}] // Flatten (* _Jean-François Alcover_, Oct 18 2018 *) %o A270408 (PARI) %o A270408 N = 11; F = 4; gmax(n) = n\2; %o A270408 Q = matrix(N + 1, N + 1); %o A270408 Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) }; %o A270408 Qset(n, g, v) = { Q[n+1, g+1] = v }; %o A270408 Quadric({x=1}) = { %o A270408 Qset(0, 0, x); %o A270408 for (n = 1, length(Q)-1, for (g = 0, gmax(n), %o A270408 my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g), %o A270408 t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1), %o A270408 t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g, %o A270408 (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i)))); %o A270408 Qset(n, g, (t1 + t2 + t3) * 6/(n+1)))); %o A270408 }; %o A270408 Quadric('x + O('x^(F+1))); %o A270408 concat(vector(N+2-F, n, vector(1 + gmax(n-1), g, polcoeff(Qget(n+F-2, g-1), F)))) %Y A270408 Cf. A000365 (column 0). %K A270408 nonn,tabf %O A270408 3,1 %A A270408 _Gheorghe Coserea_, Mar 17 2016