This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A270409 #24 Oct 18 2018 06:22:17 %S A270409 14,386,5868,2310,65954,100156,614404,2278660,570570,5030004,36703824, %T A270409 34374186,37460376,472592916,1059255456,211083730,259477218, %U A270409 5188948072,22555934280,16476937840,1697186964,50534154408,375708427812,647739636160,111159740692 %N A270409 Triangle read by rows: T(n,g) is the number of rooted maps with n edges and 5 faces on an orientable surface of genus g. %C A270409 Row n contains floor((n-2)/2) terms. %H A270409 Gheorghe Coserea, <a href="/A270409/b270409.txt">Rows n = 4..104, flattened</a> %H A270409 Sean R. Carrell, Guillaume Chapuy, <a href="http://arxiv.org/abs/1402.6300">Simple recurrence formulas to count maps on orientable surfaces</a>, arXiv:1402.6300 [math.CO], 2014. %e A270409 Triangle starts: %e A270409 n\g [0] [1] [2] [3] %e A270409 [4] 14; %e A270409 [5] 386; %e A270409 [6] 5868, 2310; %e A270409 [7] 65954, 100156; %e A270409 [8] 614404, 2278660, 570570; %e A270409 [9] 5030004, 36703824, 34374186; %e A270409 [10] 37460376, 472592916, 1059255456, 211083730; %e A270409 [11] 259477218, 5188948072, 22555934280, 16476937840; %e A270409 [12] ... %t A270409 Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0; %t A270409 Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1) ((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3) (2n-2) (2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1) (2l-1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]); %t A270409 T[n_, g_] := Q[n, 5, g]; %t A270409 Table[T[n, g], {n, 4, 12}, {g, 0, Quotient[n-2, 2]-1}] // Flatten (* _Jean-François Alcover_, Oct 18 2018 *) %o A270409 (PARI) %o A270409 N = 12; F = 5; gmax(n) = n\2; %o A270409 Q = matrix(N + 1, N + 1); %o A270409 Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) }; %o A270409 Qset(n, g, v) = { Q[n+1, g+1] = v }; %o A270409 Quadric({x=1}) = { %o A270409 Qset(0, 0, x); %o A270409 for (n = 1, length(Q)-1, for (g = 0, gmax(n), %o A270409 my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g), %o A270409 t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1), %o A270409 t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g, %o A270409 (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i)))); %o A270409 Qset(n, g, (t1 + t2 + t3) * 6/(n+1)))); %o A270409 }; %o A270409 Quadric('x + O('x^(F+1))); %o A270409 v = vector(N+2-F, n, vector(1 + gmax(n-1), g, polcoeff(Qget(n+F-2, g-1), F))); %o A270409 concat(v) %Y A270409 Cf. A270408. %K A270409 nonn,tabf %O A270409 4,1 %A A270409 _Gheorghe Coserea_, Mar 17 2016