This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A270410 #17 Oct 18 2018 04:03:15 %S A270410 42,1586,31388,12012,442610,649950,5030004,17970784,4390386,49145460, %T A270410 344468530,313530000,429166584,5188948072,11270290416,2198596400, %U A270410 3435601554,65723863196,276221817810,196924458720,25658464260,729734918432,5235847653036,8789123742880,1480593013900 %N A270410 Triangle read by rows: T(n,g) is the number of rooted maps with n edges and 6 faces on an orientable surface of genus g. %C A270410 Row n contains floor((n-3)/2) terms. %H A270410 Gheorghe Coserea, <a href="/A270410/b270410.txt">Rows n = 5..105, flattened</a> %H A270410 Sean R. Carrell, Guillaume Chapuy, <a href="http://arxiv.org/abs/1402.6300">Simple recurrence formulas to count maps on orientable surfaces</a>, arXiv:1402.6300 [math.CO], 2014. %e A270410 Triangle starts: %e A270410 n\g [0] [1] [2] [3] %e A270410 [5] 42; %e A270410 [6] 1586; %e A270410 [7] 31388, 12012; %e A270410 [8] 442610, 649950; %e A270410 [9] 5030004, 17970784, 4390386; %e A270410 [10] 49145460, 344468530, 313530000; %e A270410 [11] 429166584, 5188948072, 11270290416, 2198596400; %e A270410 [12] 3435601554, 65723863196, 276221817810, 196924458720; %e A270410 [13] ... %t A270410 Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0; %t A270410 Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1)((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3)(2n-2)(2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1)(2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]); %t A270410 T[n_, g_] := Q[n, 6, g]; %t A270410 Table[T[n, g], {n, 5, 13}, {g, 0, Quotient[n-3, 2]-1}] // Flatten (* _Jean-François Alcover_, Oct 18 2018 *) %o A270410 (PARI) %o A270410 N = 12; F = 6; gmax(n) = n\2; %o A270410 Q = matrix(N + 1, N + 1); %o A270410 Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) }; %o A270410 Qset(n, g, v) = { Q[n+1, g+1] = v }; %o A270410 Quadric({x=1}) = { %o A270410 Qset(0, 0, x); %o A270410 for (n = 1, length(Q)-1, for (g = 0, gmax(n), %o A270410 my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g), %o A270410 t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1), %o A270410 t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g, %o A270410 (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i)))); %o A270410 Qset(n, g, (t1 + t2 + t3) * 6/(n+1)))); %o A270410 }; %o A270410 Quadric('x + O('x^(F+1))); %o A270410 v = vector(N+2-F, n, vector(1 + gmax(n-1), g, polcoeff(Qget(n+F-2, g-1), F))); %o A270410 concat(v) %Y A270410 Cf. A270409. %K A270410 nonn,tabf %O A270410 5,1 %A A270410 _Gheorghe Coserea_, Mar 17 2016