This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A270411 #14 Oct 18 2018 05:11:28 %S A270411 132,6476,160648,60060,2762412,3944928,37460376,129726760,31039008, %T A270411 429166584,2908358552,2583699888,4331674512,50534154408,106853266632, %U A270411 20465052608,39599553708,729734918432,2979641557620,2079913241120 %N A270411 Triangle read by rows: T(n,g) is the number of rooted maps with n edges and 7 faces on an orientable surface of genus g. %C A270411 Row n contains floor((n-4)/2) terms. %H A270411 Gheorghe Coserea, <a href="/A270411/b270411.txt">Rows n = 6..106, flattened</a> %H A270411 Sean R. Carrell, Guillaume Chapuy, <a href="http://arxiv.org/abs/1402.6300">Simple recurrence formulas to count maps on orientable surfaces</a>, arXiv:1402.6300 [math.CO], 2014. %e A270411 Triangle starts: %e A270411 n\g [0] [1] [2] [3] %e A270411 [6] 132; %e A270411 [7] 6476; %e A270411 [8] 160648, 60060; %e A270411 [9] 2762412, 3944928; %e A270411 [10] 37460376, 129726760, 31039008; %e A270411 [11] 429166584, 2908358552, 2583699888; %e A270411 [12] 4331674512, 50534154408, 106853266632, 20465052608; %e A270411 [13] 39599553708, 729734918432, 2979641557620, 2079913241120; %e A270411 [14] ... %t A270411 Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0; %t A270411 Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1) ((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3) (2n-2) (2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1) (2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]); %t A270411 T[n_, g_] := Q[n, 7, g]; %t A270411 Table[T[n, g], {n, 6, 13}, {g, 0, Quotient[n-4, 2]-1}] // Flatten %o A270411 (PARI) %o A270411 N = 13; F = 7; gmax(n) = n\2; %o A270411 Q = matrix(N + 1, N + 1); %o A270411 Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) }; %o A270411 Qset(n, g, v) = { Q[n+1, g+1] = v }; %o A270411 Quadric({x=1}) = { %o A270411 Qset(0, 0, x); %o A270411 for (n = 1, length(Q)-1, for (g = 0, gmax(n), %o A270411 my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g), %o A270411 t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1), %o A270411 t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g, %o A270411 (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i)))); %o A270411 Qset(n, g, (t1 + t2 + t3) * 6/(n+1)))); %o A270411 }; %o A270411 Quadric('x + O('x^(F+1))); %o A270411 v = vector(N+2-F, n, vector(1 + gmax(n-1), g, polcoeff(Qget(n+F-2, g-1), F))); %o A270411 concat(v) %Y A270411 Cf. A270410. %K A270411 nonn,tabf %O A270411 6,1 %A A270411 _Gheorghe Coserea_, Mar 17 2016