This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A270412 #14 Oct 18 2018 06:22:07 %S A270412 429,26333,795846,291720,16322085,22764165,259477218,875029804, %T A270412 205633428,3435601554,22620890127,19678611645,39599553708, %U A270412 448035881592,925572602058,174437377400,409230997461,7302676928666,29079129795702,19925913354061 %N A270412 Triangle read by rows: T(n,g) is the number of rooted maps with n edges and 8 faces on an orientable surface of genus g. %C A270412 Row n contains floor((n-5)/2) terms. %H A270412 Gheorghe Coserea, <a href="/A270412/b270412.txt">Rows n = 7..107, flattened</a> %H A270412 Sean R. Carrell, Guillaume Chapuy, <a href="http://arxiv.org/abs/1402.6300">Simple recurrence formulas to count maps on orientable surfaces</a>, arXiv:1402.6300 [math.CO], 2014. %e A270412 Triangle starts: %e A270412 n\g [0] [1] [2] [3] %e A270412 [7] 429; %e A270412 [8] 26333; %e A270412 [9] 795846, 291720; %e A270412 [10] 16322085, 22764165; %e A270412 [11] 259477218, 875029804, 205633428; %e A270412 [12] 3435601554, 22620890127, 19678611645; %e A270412 [13] 39599553708, 448035881592, 925572602058, 174437377400; %e A270412 [14] 409230997461, 7302676928666, 29079129795702, 19925913354061; %e A270412 [15] ... %t A270412 Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0; %t A270412 Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1) ((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3) (2n-2) (2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1) (2l-1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]); %t A270412 T[n_, g_] := Q[n, 8, g]; %t A270412 Table[T[n, g], {n, 7, 14}, {g, 0, Quotient[n-5, 2]-1}] // Flatten (* _Jean-François Alcover_, Oct 18 2018 *) %o A270412 (PARI) %o A270412 N = 14; F = 8; gmax(n) = n\2; %o A270412 Q = matrix(N + 1, N + 1); %o A270412 Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) }; %o A270412 Qset(n, g, v) = { Q[n+1, g+1] = v }; %o A270412 Quadric({x=1}) = { %o A270412 Qset(0, 0, x); %o A270412 for (n = 1, length(Q)-1, for (g = 0, gmax(n), %o A270412 my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g), %o A270412 t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1), %o A270412 t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g, %o A270412 (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i)))); %o A270412 Qset(n, g, (t1 + t2 + t3) * 6/(n+1)))); %o A270412 }; %o A270412 Quadric('x + O('x^(F+1))); %o A270412 v = vector(N+2-F, n, vector(1 + gmax(n-1), g, polcoeff(Qget(n+F-2, g-1), F))); %o A270412 concat(v) %Y A270412 Cf. A270411. %K A270412 nonn,tabf %O A270412 7,1 %A A270412 _Gheorghe Coserea_, Mar 17 2016