cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270414 Numbers m such that sigma(m-1) and sigma(phi(m)) are both primes.

This page as a plain text file.
%I A270414 #15 Apr 13 2025 14:52:20
%S A270414 3,5,10,17,65537
%N A270414 Numbers m such that sigma(m-1) and sigma(phi(m)) are both primes.
%C A270414 Numbers n such that A000203(n-1) and A062402(n) are both primes.
%C A270414 There are no other terms <= 10^7.
%C A270414 Intersection of A270413 and A062514.
%C A270414 Prime terms are in A249759.
%C A270414 Corresponding values of sigma(n-1): 3, 7, 13, 31, 131071, ...
%C A270414 Corresponding values of sigma(phi(n)): 3, 7, 7, 31, 131071, ...
%C A270414 Conjecture: union of number 10 and A249759.
%e A270414 10 is in the sequence because sigma(10-1) = sigma(9) = 13 and sigma(phi(10)) = sigma(4) = 7 (both primes).
%t A270414 Select[Range[10^6], And[PrimeQ@ DivisorSigma[1, # - 1], PrimeQ@ DivisorSigma[1, EulerPhi@ #]] &] (* _Michael De Vlieger_, Mar 17 2016 *)
%o A270414 (Magma) [n: n in [2..100000] |  IsPrime(SumOfDivisors(n-1)) and IsPrime(SumOfDivisors(EulerPhi(n)))];
%o A270414 (PARI) isok(n) = isprime(sigma(n-1)) && isprime(sigma(eulerphi(n))); \\ _Michel Marcus_, Mar 17 2016
%Y A270414 Cf. A000010, A000203, A062514, A249759, A256438, A270413.
%K A270414 nonn,more
%O A270414 1,1
%A A270414 _Jaroslav Krizek_, Mar 16 2016