cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270419 Denominator of the rational number obtained when the exponents in prime factorization of n are reinterpreted as alternating binary sums (A065620).

This page as a plain text file.
%I A270419 #22 Nov 17 2024 07:17:14
%S A270419 1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,3,1,1,1,1,8,1,1,
%T A270419 1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,2,1,1,1,1,1,1,1,4,1,1,1,1,
%U A270419 1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,8,1,1,1,1,1,1,1,2,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,2
%N A270419 Denominator of the rational number obtained when the exponents in prime factorization of n are reinterpreted as alternating binary sums (A065620).
%C A270419 Map n -> A270418(n)/A270419(n) is a bijection from N (1, 2, 3, ...) to the set of positive rationals.
%H A270419 Antti Karttunen, <a href="/A270419/b270419.txt">Table of n, a(n) for n = 1..12167</a>
%F A270419 Multiplicative with a(p^e) = p^(-A065620(e)) for evil e, a(p^e)=1 for odious e, or equally, a(p^e) = p^(A010059(e) * -A065620(e)).
%F A270419 a(1) = 1, for n > 1, a(n) = a(A028234(n)) * A020639(n)^( A010059(A067029(n)) * -A065620(A067029(n)) ).
%F A270419 Other identities. For all n >= 1:
%F A270419 a(A270436(n)) = 1, a(A270437(n)) = n.
%t A270419 s[n_] := s[n] = If[OddQ[n], -2*s[(n - 1)/2] - 1, 2*s[n/2]]; s[0] = 0; f[p_, e_] := p^If[OddQ[DigitCount[e, 2, 1]], 0, s[e]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Sep 01 2023 *)
%o A270419 (Scheme, two variants)
%o A270419 (definec (A270419 n) (cond ((= 1 n) 1) (else (* (expt (A020639 n) (* (A010059 (A067029 n)) (- (A065620 (A067029 n))))) (A270419 (A028234 n))))))
%o A270419 (define (A270419 n) (denominator (A270418perA270419 n)))
%o A270419 (definec (A270418perA270419 n) (cond ((= 1 n) 1) (else (* (expt (A020639 n) (A065620 (A067029 n))) (A270418perA270419 (A028234 n))))))
%o A270419 (PARI) A270419(n)={n=factor(n);n[,2]=apply(A065620,n[,2]);denominator(factorback(n))} \\ _M. F. Hasler_, Apr 16 2018
%Y A270419 Cf. A270418 (gives the numerators).
%Y A270419 Cf. A270428 (indices of ones).
%Y A270419 Cf. A000069, A001969, A010059, A020639, A028234, A065620, A067029.
%Y A270419 Cf. also A270420, A270421, A270436, A270437 and permutation pair A273671/A273672.
%Y A270419 Differs from A055229 for the first time at n=32, where a(32)=8, while A055229(32)=2.
%K A270419 nonn,easy,frac,mult
%O A270419 1,8
%A A270419 _Antti Karttunen_, May 23 2016