A270438 a(n) is the number of entries == 1 mod 4 in row n of Pascal's triangle.
1, 2, 2, 2, 2, 4, 2, 4, 2, 4, 4, 4, 2, 4, 4, 8, 2, 4, 4, 4, 4, 8, 4, 8, 2, 4, 4, 8, 4, 8, 8, 16, 2, 4, 4, 4, 4, 8, 4, 8, 4, 8, 8, 8, 4, 8, 8, 16, 2, 4, 4, 8, 4, 8, 8, 16, 4, 8, 8, 16, 8, 16, 16, 32, 2, 4, 4, 4, 4, 8, 4, 8, 4, 8, 8, 8, 4, 8, 8, 16, 4, 8, 8
Offset: 0
Examples
Row 3 of Pascal's triangle is (1,3,3,1) and has two entries == 1 (mod 4), so a(3) = 2.
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- Kenneth S. Davis and William A. Webb, Pascal's triangle modulo 4, Fib. Quart., 29 (1991), 79-83.
- A. Granville, Zaphod Beeblebrox's Brain and the Fifty-ninth Row of Pascal's Triangle, The American Mathematical Monthly, 99(4) (1992), 318-331.
Programs
-
Maple
f:= proc(n) local L,m; L:= convert(n,base,2); m:= convert(L,`+`); if has(L[1..-2]+L[2..-1],2) then 2^(m-1) else 2^m fi end proc: map(f, [$0..1000]);
-
Mathematica
Count[#, 1] & /@ Table[Mod[Binomial[n, k], 4], {n, 0, 120}, {k, 0, n}] (* Michael De Vlieger, Feb 26 2017 *)
-
PARI
a(n) = 2^(hammingweight(n) - min(hammingweight(bitand(n, n>>1)),1)) \\ Charles R Greathouse IV, Jul 13 2016
-
Python
def A270438(n): return 1<
>1)).bit_count() # Chai Wah Wu, Apr 24 2025
Comments